
PULP PLATFORM
Open Source Hardware, the way it should be!

 http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: PULP Introduction

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci,
Daniele Palossi

|

Team
AI-deck Introduction

▪ Lorenzo Lamberti University of Bologna lorenzo.lamberti@unibo.it

▪ Hanna Müller ETH Zürich hanmuell@iis.ee.ethz.ch

▪ Vlad Niculescu ETH Zürich vladn@iis.ee.ethz.ch

▪ Dr. Manuele Rusci University of Bologna / Greenwaves Tech. manuele.rusci@greenwaves-technologies.com

▪ Dr. Daniele Palossi IDSIA Lugano / ETH Zürich dpalossi@iis.ee.ethz.ch

16.04.2021 2D. Palossi

mailto:lorenzo.lamberti@unibo.it
mailto:hanmuell@iis.ee.ethz.ch
mailto:vladn@iis.ee.ethz.ch
mailto:sivarajah.sivapiriyan@greenwaves-technologies.com
mailto:dpalossi@iis.ee.ethz.ch

|

Team affiliations
AI-deck Introduction

3

University of Lugano (USI/SUPSI)

University of Bologna (UniBO)Greenwaves Tech. in Grenoble (GWT)

Polytechnic of Zürich (ETHZ)

We are looking for outstanding Ph.D. candidates: https://www.supsi.ch/home_en/supsi/lavora-con-noi/2021-02-24-bando816.html

16.04.2021D. Palossi

|

Agenda
AI-deck Introduction

16.04.2021 4

Topic Time Description Speaker
PULP introduction 15’ Parallel Ultra-low Power (PULP) overview Daniele

GAP8 architecture 10’ System-on-Chip hardware architecture Manuele

AI-deck 15’ Printed circuit board overview & GAP8 SDK Hanna

Break 15’

Basic programming 10’ JTAG programming & ‘Hello World’ example Hanna

Image manipulation 10’ Image acquisition, parallel image filter Hanna

Firmware integration 15’ App-layer integration, UART communication Vlad

Video streaming 20’ Basic Wi-Fi streaming, JPEG image compression Lorenzo

Conclusion 5’ Final remarks Daniele

O
ve

rv
ie

w
H

an
ds

-o
n

D. Palossi

|

Parallel Ultra-low Power (PULP)
AI-deck Introduction

16.04.2021 5D. Palossi

■ The PULP project started in 2013
■ Collaboration between the University of Bologna and ETH Zürich

○ Large team, about 60 people, not all are working on PULP
■ Academic/Research goals:

○ Create a compute platform used for research (e.g., autonomous nano-drones) by the PULP and other groups in
Europe and in the World

○ Push energy efficiency of IoT computing systems as much as possible (we target research on low-power MCUs)
○ Open-source approach

■ We wanted to start with a clean slate, no need to remain compatible with legacy systems, no dependency
with any commercial IP

■ We started with OpenRISC and around mid-2016 we moved to RISC-V ISA:
○ Larger community, more momentum

2013 2014 2015 2016 2017 2018 2019 2020 2021

|

PULP ecosystem
AI-deck Introduction

16.04.2021 6

W
e h

av
e d

ev
elo

pe
d s

ev
er

al
op

tim
ize

d R
IS

C-
V

co
re

s

D. Palossi

|

PULP ecosystem
AI-deck Introduction

16.04.2021 7

On
ly

pr
oc

es
sin

g c
or

es
 ar

e n
ot

en
ou

gh
, w

e n
ee

d m
or

e

D. Palossi

|

PULP ecosystem
AI-deck Introduction

16.04.2021 8

Al
l th

es
e c

om
po

ne
nts

 ar
e

co
mb

ine
d i

nto
 pl

atf
or

ms

D. Palossi

|

PULP ecosystem
AI-deck Introduction

16.04.2021 9D. Palossi

Al
l th

es
e c

om
po

ne
nts

 ar
e

co
mb

ine
d i

nto
 pl

atf
or

ms

PULP Silicon Prototypes

10

AI-deck Introduction

16.04.2021D. Palossi

PULP Silicon Prototypes

11

AI-deck Introduction

16.04.2021D. Palossi

GAP8
■ 2 MGE
■ 55 nm

https://en.wikichip.org/wiki/greenwaves/gap8

|

Who uses PULP?
AI-deck Introduction

12

Industrial users: Direct research collaborators:

Ac
ad

em
ic

us
er

s w
e a

re

aw
ar

e o
f:

16.04.2021D. Palossi

|

The PULP-Shield
AI-deck Introduction

16.04.2021 13

ULP heterogeneous model [1]

[1] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini. "Enabling the heterogeneous accelerator model on ultra-low power microcontroller platforms." IEEE DATE, 2016.

D. Palossi

|

The PULP-Shield
AI-deck Introduction

16.04.2021 14

ULP heterogeneous model [1]

[1] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini. "Enabling the heterogeneous accelerator model on ultra-low power microcontroller platforms." IEEE DATE, 2016.

D. Palossi

|

The PULP-Shield
AI-deck Introduction

16.04.2021 15

ULP heterogeneous model [1] PULP-Shield [2]

[1] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini. "Enabling the heterogeneous accelerator model on ultra-low power microcontroller platforms." IEEE DATE, 2016.
[2] D. Palossi, F. Conti, and L. Benini "An open source and open hardware deep learning-powered visual navigation engine for autonomous nano-UAVs." IEEE DCOSS, 2019.

■ ~ 5 g – 30x28 mm
■ PULP GAP8 SoC
■ Off-chip DRAM/Flash
■ QVGA ULP Camera
■ Open source hardware

D. Palossi

|

The PULP-Shield
AI-deck Introduction

16.04.2021 16

ULP heterogeneous model [1] PULP-Shield [2] AI-Deck

■ ~ 8 g – 40x28 mm
■ PULP GAP8 SoC
■ 8/64 MB DRAM/Flash
■ QVGA ULP Camera
■ WiFi module

[1] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini. "Enabling the heterogeneous accelerator model on ultra-low power microcontroller platforms." IEEE DATE, 2016.
[2] D. Palossi, F. Conti, and L. Benini "An open source and open hardware deep learning-powered visual navigation engine for autonomous nano-UAVs." IEEE DCOSS, 2019.

■ ~ 5 g – 30x28 mm
■ PULP GAP8 SoC
■ Off-chip DRAM/Flash
■ QVGA ULP Camera
■ Open source hardware

D. Palossi

|

The AI-Deck
AI-deck Introduction

16.04.2021 17

Crazyflie (STM32)

AI-Deck (GAP8)

Cr
az

yf
lie

 +
AI

-D
ec

k

Radio:
NINA Wi-Fi

UART Link

Radio:
Nordic BTLE

Radio dongle

Wi-Fi card

nRF51 2.4GHz
Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz
Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

D. Palossi

|

The AI-Deck
AI-deck Introduction

16.04.2021 18

Crazyflie (STM32)

AI-Deck (GAP8)

Cr
az

yf
lie

 +
AI

-D
ec

k

Radio:
NINA Wi-Fi

UART Link

Radio:
Nordic BTLE

Radio dongle

Wi-Fi card

D. Palossi

Hands-on 1-2: GAP8
programming & camera

nRF51 2.4GHz
Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz
Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

|

The AI-Deck
AI-deck Introduction

16.04.2021 19

Crazyflie (STM32)

AI-Deck (GAP8)

Cr
az

yf
lie

 +
AI

-D
ec

k

Radio:
NINA Wi-Fi

UART Link

Radio:
Nordic BTLE

Radio dongle

Wi-Fi card

D. Palossi

Hands-on 3: integration &
UART

nRF51 2.4GHz
Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz
Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

|

nRF51 2.4GHz
Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz
Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

The AI-Deck
AI-deck Introduction

16.04.2021 20

Crazyflie (STM32)

AI-Deck (GAP8)

Cr
az

yf
lie

 +
AI

-D
ec

k

Radio:
NINA Wi-Fi

UART Link

Radio:
Nordic BTLE

Radio dongle

Wi-Fi card

D. Palossi

Hands-on 4: Wi-Fi
image streaming

|

AI-based applications (not in this workshop)

AI-deck Introduction

21

PULP-Dronet:

https://github.com/pulp-platfor
m/pulp-dronet

https://www.youtube.com/watc
h?v=JKY03NV3C2s

Task: Lane detection / Obstacle avoidance

CNN: 41 MMAC/frame

Onboard: 6fps@45mW / 18fps@272mW

Device: PULP-Shield (GAP8)

arXiv.org https://arxiv.org/abs/1805.01831

16.04.2021D. Palossi

https://github.com/pulp-platform/pulp-dronet
https://github.com/pulp-platform/pulp-dronet
https://www.youtube.com/watch?v=JKY03NV3C2s
https://www.youtube.com/watch?v=JKY03NV3C2s

|

AI-based applications (not in this workshop)

AI-deck Introduction

22

PULP-Dronet:

https://github.com/pulp-platfor
m/pulp-dronet

https://www.youtube.com/watc
h?v=JKY03NV3C2s

Task: Lane detection / Obstacle avoidance

CNN: 41 MMAC/frame

Onboard: 6fps@45mW / 18fps@272mW

Device: PULP-Shield (GAP8)

arXiv.org https://arxiv.org/abs/1805.01831

PULP-Dronet v2 for the AI-Deck coming soon on

16.04.2021D. Palossi

https://github.com/pulp-platform/pulp-dronet
https://github.com/pulp-platform/pulp-dronet
https://www.youtube.com/watch?v=JKY03NV3C2s
https://www.youtube.com/watch?v=JKY03NV3C2s

|

AI-based applications (not in this workshop)

AI-deck Introduction

23

PULP-Frontnet:PULP-Dronet:

https://github.com/pulp-platfor
m/pulp-dronet

Coming soon!https://www.youtube.com/watc
h?v=JKY03NV3C2s

Coming soon!

Task: Lane detection / Obstacle avoidance

CNN: 41 MMAC/frame

Onboard: 6fps@45mW / 18fps@272mW

Device: PULP-Shield (GAP8)

arXiv.org https://arxiv.org/abs/1805.01831

Task: Human pose estimation

CNN: 14 / 4.3 / 4 MMAC/frame

Onboard: 48fps@20mW / 135fps@86mW

Device: AI-Deck (GAP8)

arXiv.org https://arxiv.org/abs/2103.10873

PULP-Dronet v2 for the AI-Deck coming soon on

16.04.2021D. Palossi

https://github.com/pulp-platform/pulp-dronet
https://github.com/pulp-platform/pulp-dronet
https://www.youtube.com/watch?v=JKY03NV3C2s
https://www.youtube.com/watch?v=JKY03NV3C2s

Thanks for your attention.

24

AI-deck Introduction

16.04.2021D. Palossi

PULP PLATFORM
Open Source Hardware, the way it should be!

 http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: GAP8 Architecture Overview

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci,
Daniele Palossi

|

Greenwaves Technologies

2

May
201
6

Start Developing
Gap8

51 Employees
and Growing…

April
2021

Company
Foundation
Grenoble France

Novembe
r

2014

Open Office in
Shanghai

Novembe
r

2019

Started Shipping
Gap8 HDKs

May
2018

February
2018

Launch First Product
Gap8

June
201

9

Open Office in
Bologna

Gap8 on
AI Deck

June
2020

Decembe
r

2019

Gap9
Launch

GAP8 Architecture overview

2

|

GAP8: a RISC-V IoT Application Processor

3

GAP8 Architecture overview

UART

I2C

CPI

SPI

MEM IF

GPIO

M
icro DM

A

L2
Memory
512kB

RISC-V
Core
FC

RISC-V Instruction Set optimized
for Digital Signal Processing

computation

RISC-V Instruction Set optimized
for Digital Signal Processing

computation

On-Chip Memory for
data storage

On-Chip Memory for
data storage

3

|

GAP8: a RISC-V IoT Application Processor

4

GAP8 Architecture overview

UART

I2C

CPI

SPI

MEM IF

GPIO

M
icro DM

A

L2
Memory
512kB

RISC-V
Core
FC

L3
Memory
>8MB

Rich-set of peripherals to
interface to a large set of

sensors

Rich-set of peripherals to
interface to a large set of

sensors

Moving peripheral data from the
interface to the on-chip memory

in the background of the
computation

Moving peripheral data from the
interface to the on-chip memory

in the background of the
computation

4

|

GAP8: a RISC-V IoT Application Processor

5

GAP8 Architecture overview

DMA

UART

I2C

CPI

SPI

MEM IF

GPIO

M
icro DM

A

L2
Memory
512kB

L1 Cluster TCDM
Memory (64kB)

Core
0

Core
1

Core
2

Core
3

Core
5

Core
6

Core
7

Core
8

RISC-V
Core
FC

Octa Core Cluster
L3

Memory
>8MB

Parallel Processing for compute-
intensive tasks on sensor data

Parallel Processing for compute-
intensive tasks on sensor data

Tightly-coupled On-chip memory
with low-latency access

Tightly-coupled On-chip memory
with low-latency access

Efficiently copying data from L2
memory to L1 memory

Efficiently copying data from L2
memory to L1 memory

5

|

Enabling AI on the Edge
▪Parallel Processing

○ Up to 9x faster than traditional single-core MCUs
○ Targeting highly-parallelizable AI workloads

▪Flexibility
○ General Purpose RISC-V Cores programmable via SW

▪Energy-efficiency
○ Optimized for low-power: ~100mW at 200MHz clock frequency

6

GAP8 Architecture overview

6

|

Data Analytics at the edge with GAP8

GAP8 Architecture overview
7

How to deploy it on a GAP8-based system?

CAT

Digital
Signal

Processing

Sensor Input

Output

𝑓 (𝑥)

|

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro DM

A

L2
Memory
512kB

L1 Cluster TCDM
Memory (64kB)

Core
0

Core
1

Core
2

Core
3

Core
5

Core
6

Core
7

Core
8

A Low-Power Intelligent System

8 GAP8 Architecture overview

Octa Core Cluster

Core
FC

1) Get your GAP8-based
system (e.g. AIdeck)

|

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro DM

A

L2
Memory
512kB

L1 Cluster TCDM
Memory (64kB)

Core
0

Core
1

Core
2

Core
3

Core
5

Core
6

Core
7

Core
8

A Low-Power Intelligent System

9 GAP8 Architecture overview

Octa Core Cluster

Core
FC

2) Data Acquisition

1) Get your GAP8-based
system (e.g. AIdeck)

|

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro DM

A

L2
Memory
512kB

L1 Cluster TCDM
Memory (64kB)

Core
0

Core
1

Core
2

Core
3

Core
5

Core
6

Core
7

Core
8

A Low-Power Intelligent System

10 GAP8 Architecture overview

Octa Core Cluster

Core
FC

3) Turn the cluster ON

2) Data Acquisition

1) Get your GAP8-based
system (e.g. AIdeck)

|

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro DM

A

L2
Memory
512kB

L1 Cluster TCDM
Memory (64kB)

Core
0

Core
1

Core
2

Core
3

Core
5

Core
6

Core
7

Core
8

Core
FC

A Low-Power Intelligent System

11 GAP8 Architecture overview

Octa Core Cluster

4) Run Digital Processing
on Sensor Data

3) Turn the cluster ON

2) Data Acquisition

1) Get your GAP8-based
system (e.g. AIdeck)

|

GAP8 – A complete solution for embedded
machine learning at the very edge

12 GAP8 Architecture overview

▪ RISC-V 8 + 1 core MCU
▪ ISA Extensions
▪ Fine grained parallelism
▪ Application Boards

RISC-V GCCRISC-V GCC

SOC SimulatorSOC Simulator

PMSIS APIPMSIS API

RTOS
FreeRTOS, PULPOS, Zephyr

RTOS
FreeRTOS, PULPOS, Zephyr

▪ GCC Based toolchain
▪ PC SoC Simulator
▪ Variety of different RTOS’s
▪ PMSIS API unifies API across RTOS’s

NNToolNNTool

GAP AutoTilerGAP AutoTiler

▪ GAPflow toolchain for
embedded ML
development

|

GAP NN Menu

13

The Neural Network Menu is a collection of software that implements Neural Networks on
Greenwaves Application Processors (GAP). This repository contains common mobile and edge
NN architecture examples, NN sample applications and full flagged reference designs.

GAP8 Architecture overview

ingredients
Image Classification Networks (several versions of Mobilenet V1, V2, V3 minimalistic, full V3 to come)
kws (Google Keyword Spotting)
Mobilenet V1 from Pytorch Model

starters
Body Detection (SSD w/ custom CNN backbone)
Face Detection (SSD w/ custom CNN backbone)
People Spotting (NN from MIT Visual Wakeup Words)
Vehicle Spotting (Customization and embedding of a deep learning pipeline for visual object spotting)

main courses
Full flagged applications (aka reference designs) running on GAPoC series boards.
ReID (on GAPoC A)
Occupancy Management (on GAPoC B)

https://github.com/mit-han-lab/VWW
https://greenwaves-technologies.com/store/
https://greenwaves-technologies.com/store/

PULP PLATFORM
Open Source Hardware, the way it should be!

 http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: GAP8 Architecture Overview

Thanks for listening
More about GreenWaves Technolgies:
https://greenwaves-technologies.com/
https://github.com/GreenWaves-Technologies/

https://greenwaves-technologies.com/
https://github.com/GreenWaves-Technologies/

PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: AI-deck
Printed circuit board overview & GAP8 SDK

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci,

Daniele Palossi

|

How to bring intelligence to nano-drones?

AI-deck - Overview

16.04.2021 2

We have:

• Crazyflie

• STM32F405

• (Flight controller)

• NRF51822

• (radio)

H. Müller

We need:

• Information about surroundings

• Camera

(ULP, greyscale/RGB, QVGA)

• Processing power for image processing (parallel)

• PULP

• One QVGA greyscale image ~ 80kB

→need more memory

• HyperMem Flash/RAM

Extra:

• WiFi Streaming

|

History – from the PULP-shield to the AI-deck

AI-deck - Overview

16.04.2021

3

Pluggable PCB:

• ~ 5 g – 30x28 mm

• PULP GAP8 SoC

• DRAM/Flash

• QVGA ULP HiMax

• Open source

PULP-shield AI-deck

Pluggable PCB:

• ~ 8 g – 40x28 mm

• PULP GAP8 SoC

• 8/64 MB DRAM/Flash

• QVGA ULP HiMax

• WiFi module

H. Müller

|

The AI-deck – logical connections

AI-deck - Overview

16.04.2021 4

Memory

HyperBus, 1.8V

GAP8 RX 3.0VRX/TX 3.0V

Confusing detail:

SPIM_VDDIO voltage domain

does NOT include the SPIM1

used here – it is in the

CAM_VDDIO domain

CHECK DATASHEET!

GAP8 has multiple voltage domains!

MISO, 3.0V

MOSI, SCK, CS, 2.8V

CPI, 2.8V MClk, 1.8V -> 2.8V

Why should I know this?

• For debugging (snooping busses)

• For fixing your deck if something

broke

• For your own hardware extensions

H. Müller

GAP8 TX, 1.8V -> 3.0V

Level shifter

|

The AI-deck

AI-deck - Overview

16.04.2021 5

M
e
m

Capacitors – a lot of capacitors and some

resistors

GAP8

N
IN

A

1.8V

2.8V

GND

VCOM_CF

(Battery

UART GAP8

TX
RX

UART NINA

RX
TX

I2C GAP8/Camera

SCL SDA

H. Müller

We noticed some decks have soldering

issues that lead to 2.4V instead of 1.8V!

Absolute maximum for the external memory

is 4.0V, supply range up to 2.0V.

|

How to program GAP8? GAP-SDK!

AI-deck - Overview

GAP-SDK provides:

▪ GAP8 RISCV GNU toolchain:
▪ Program/control gap8

▪ Use gdb

▪ Program external HyperFlash

▪ Virtual platform (gvsoc)

▪ Operating Systems
▪ PulpOS

▪ FreeRTOS

▪ PMSIS API/BSP (common driver)

16.04.2021 6

Example: to queue a buffer that receives camera samples:

In PMSIS BSP: static void pi_camera_capture _async()

Uses a function to queue a buffer that receives CPI samples:

In PMSIS API: static void pi_cpi_capture_async()

The OS is on top – you can define a callback task from your OS

FC

FC L1
16 KB

L2 Memory

512 KB

JTAG

UART

Cluster Shared L1

64 KB

C

O

R

E

0

C

O

R

E

1

C

O

R

E

2

C

O

R

E

3

C

O

R

E

4

C

O

R

E

5

C

O

R

E

6

C

O

R

E

7

DMA

MEM

H. Müller

|

How to program GAP8? GAP-SDK!

AI-deck - Overview

GAP-SDK provides:

▪ GAP8 RISCV GNU toolchain:
▪ Program/control gap8

▪ Use gdb

▪ Program external HyperFlash

▪ Virtual platform (gvsoc)

▪ Operating Systems
▪ PulpOS

▪ FreeRTOS

▪ PMSIS API/BSP (common driver)

16.04.2021 7

Example: to queue a buffer that receives camera samples:

In PMSIS BSP: static void pi_camera_capture _async()

Uses a function to queue a buffer that receives CPI samples:

In PMSIS API: static void pi_cpi_capture_async()

The OS is on top – you can define a callback task from your OS

FC

FC L1
16 KB

L2 Memory

512 KB

JTAG

UART

Cluster Shared L1

64 KB

C

O

R

E

0

C

O

R

E

1

C

O

R

E

2

C

O

R

E

3

C

O

R

E

4

C

O

R

E

5

C

O

R

E

6

C

O

R

E

7

DMA

MEM

https://github.com/GreenWaves-Technologies/gap_sdk

https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html

H. Müller

http://SDhttps:/github.com/GreenWaves-Technologies/gap_sdk
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html

|

Easiest way: Bitcraze VM!
▪ Gap-sdk is installed! Open a terminal and get started :)

▪ Also: All tools installed to compile for and flash the STM32 and nRF on the Crazyflie
(Ubuntu, gnu-arm-none-eabi toolchain, python dependencies, KiCad, and many more)

▪ Update your Crazyflie 2.x to the most recent firmware before trying to program

GAP8!

How to program GAP8?

AI-deck - Overview

16.04.2021 8

Important: in the VM you need to use docker!

Some commands are preconfigured in the .bashrc file

Just typing "make clean all run" like on a native install will

not work. Type "gap_run" instead

H. Müller

PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: Hands-on Session 1

'Hello World' on the AI-deck

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci,

Daniele Palossi

|

The AI-Deck

AI-deck - Hands-on

16.04.2021 10

Crazyflie (STM32)

AI-Deck (GAP8)

C
ra

z
y

fl
ie

 +
 A

I-
D

e
c

k

Radio dongle

Wi-Fi card

Hands-on 1: GAP8

programming

Radio:

NINA Wi-Fi

UART Link

Radio:

Nordic BTLE

nRF51 2.4GHz

Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz

Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

H. Müller

|

Hands-on: Hello World!

AI-deck - Hands-on

Open a terminal
1. cd $GAP_SDK_HOME

Env variable set by step 2

2. source configs/ai_deck.sh

Is done already in VM

1. cd examples/pmsis/helloworld

2. Connect JTAG

3. Power on drone/AI-deck

4. Compile and run

16.04.2021 11

Code is always executed from L2!

(Volatile memory – if you lose power,

you lose the code)

You can store your code in flash,

then the bootloader loads the code

on startup

GAP8

L2

Memory

Flash

Memory

make flash

"gap_run" in the VM, no command

configured for gvsoc, you can add it

yourself to the .bashrc script

H. Müller

|

Hands-on: Hello World!

AI-deck - Hands-on

16.04.2021 12

FC

FC L1
16KB

L2

Memory

512 KB

JTAG

UART

Cluster Shared L1

64 KB

C

O

R

E

0

C

O

R

E

1

C

O

R

E

2

C

O

R

E

3

C

O

R

E

4

C

O

R

E

5

C

O

R

E

6

C

O

R

E

7

D
M

A

MEM

H. Müller

|

Hands-on: Hello World!

AI-deck - Hands-on

16.04.2021 13

We are on the Fabric controller

Cluster ID is 32 per default.

We only have core 0.

Init cluster config to default values

Set id manually

Point cluster device to your config

Open cluster (power up), blocking

Configure cluster task

Send task to cluster

(blocking, also exists

in async)

FC

FC L1
16KB

L2

Memory

512 KB

JTAG

UART

Cluster Shared L1

64 KB

C

O

R

E

0

C

O

R

E

1

C

O

R

E

2

C

O

R

E

3

C

O

R

E

4

C

O

R

E

5

C

O

R

E

6

C

O

R

E

7

D
M

A

MEM

H. Müller

|

Hands-on: Hello World!

AI-deck - Hands-on

16.04.2021 14

We are on the Fabric controller

Cluster ID is 32 per default.

We only have core 0.

Init cluster config to default values

Set id manually

Point cluster device to your config

Open cluster (power up), blocking

Configure cluster task

Send task to cluster

(blocking, also exists

in async)
We are only on core 0 of the cluster yet

FC

FC L1
16KB

L2

Memory

512 KB

JTAG

UART

Cluster Shared L1

64 KB

C

O

R

E

0

C

O

R

E

1

C

O

R

E

2

C

O

R

E

3

C

O

R

E

4

C

O

R

E

5

C

O

R

E

6

C

O

R

E

7

D
M

A

MEM

C

O

R

E

0

FC

H. Müller

|

Hands-on: Hello World!

AI-deck - Hands-on

16.04.2021 15

We are on the Fabric controller

Cluster ID is 32 per default.

We only have core 0.

Init cluster config to default values

Set id manually

Point cluster device to your config

Open cluster (power up), blocking

Configure cluster task

Send task to cluster

(blocking, also exists

in async)
We are only on core 0 of the cluster yet

Fork to number of cluster cores available

FC

FC L1
16KB

L2

Memory

512 KB

JTAG

UART

Cluster Shared L1

64 KB

C

O

R

E

0

C

O

R

E

1

C

O

R

E

2

C

O

R

E

3

C

O

R

E

4

C

O

R

E

5

C

O

R

E

6

C

O

R

E

7

D
M

A

MEM

C

O

R

E

0

FC

Print cluster and core ID

C

O

R

E

2

C

O

R

E

1

C

O

R

E

4

C

O

R

E

3

C

O

R

E

5

C

O

R

E

7

C

O

R

E

6

H. Müller

|

Hands-on: Hello World!

AI-deck - Hands-on

16.04.2021 16

Makefile

Add sources here

Add directories to include (header files) here

H. Müller

PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: Hands-on Session 2

Image acquisition and parallel image filter

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci,

Daniele Palossi

|

The AI-Deck

AI-deck - Hands-on

16.04.2021 18

Crazyflie (STM32)

AI-Deck (GAP8)

C
ra

z
y

fl
ie

 +
 A

I-
D

e
c

k

Radio dongle

Wi-Fi card

Hands-on 2: GAP8

programming & camera

Radio:

NINA Wi-Fi

UART Link

Radio:

Nordic BTLE

nRF51 2.4GHz

Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz

Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck – Hands-on

16.04.2021 19

1. git clone https://github.com/bitcraze/AIdeck_examples

2. set up your gap-sdk (source configs/ai_deck.sh)

3. Go to GAP8/image_processing_examples/simple_kernel_example

4. Compile and run the code (make clean all run platform=board or

gap_run in the VM)

5. You can configure some flags in the Makefile

First: execution flow using

demosaicking on the fabric

controller as example

Then: parallelization with inverting

an image on the cluster.

The code is simplified on the slides

(but functional)

H. Müller

Inverting

Fabric

controller

Inverting

Cluster

Demosaicking

Fabric

controller

Demosaicking

Cluster

https://github.com/bitcraze/AIdeck_examples

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 20

Before we start, let's think about memory:

How many QVGA images could you have on

GAP8 at the same time?

Does it matter if they are colored or grey? Hint:

GAP8 L2 Memory:512kB

Not even a single grey scale one on L1.

6 grey scale or 2 RGB in L2 – BUT do not forget,

you also need space for the code in L2!

L2

512kB
L1

64kB
79kB

GAP8 Memory

Image size

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck – Hands-on

16.04.2021 21

while(1){

//
//

Great! You now have basically an

universal pipeline for any kernel

you want to run.

As an example, try to replace the

demosaicking with inverting the

image

Include drivers

Include image IO library

Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 22

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 23

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera
Open camera

Open and initialize camera

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 24

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera

Open camera

Open and initialize camera
Configure camera registers

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 25

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera

Open camera

Open and initialize camera

Configure camera registersAllocated buffers in L2

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 26

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera

Open camera

Open and initialize camera

Configure camera registers

Allocated buffers in L2

Asynchronus capture – can queue buffer before starting camera

Wait for capture to end (pi_yield() blocks until an event happens)

Start camera

Blocking capture

Stop and close camera

Apply a kernel

Write image over openOCD/JTAG to a file on the computer

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 27

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera

Open camera

Open and initialize camera

Configure camera registers

Allocated buffers in L2

Asynchronus capture – can queue buffer before starting

camera

Wait for capture to end (pi_yield() blocks until an event happens)

Start camera

Blocking capture

Stop and close camera

Apply a kernel

Write image over openOCD/JTAG to a file on the computerAsynchronus capture callback

But we do not only want to take one image,

we want to continously take images in a loop!

For simplicity, we focus on synchronus capture

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 28

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera

Open camera

Open and initialize camera

Configure camera registers

Allocated buffers in L2

Asynchronus capture – can queue buffer before starting

camera

Wait for capture to end (pi_yield() blocks until an event happens)

Start camera

Blocking capture

Stop and close camera

Apply a kernel

Write image over openOCD/JTAG to a file on the computerAsynchronus capture callback

But we do not only want to take one image,

we want to continously take images in a loop!

For simplicity, we focus on synchronus capture

Set up OS, then jump to test_camera

Open camera

Configure camera registers

Allocated buffers in L2

Asynchronus capture – can queue buffer before starting camera

Wait for capture to end (pi_yield() blocks until an event happens)

Start camera

Blocking capture

Stop and close camera

Apply a kernel

Write image over openOCD/JTAG to a file on the computer

H. Müller

|

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 29

while(1){

//
//

Include drivers
Include image IO library
Include own demosaicking function

Define acquisition size

Define variables – place buffer in L2

Set up OS, then jump to test_camera

Open camera

Open and initialize camera

Configure camera registers

Allocated buffers in L2

Asynchronus capture – can queue buffer before starting

camera

Wait for capture to end (pi_yield() blocks until an event happens)

Start camera

Blocking capture

Stop and close camera

Apply a kernel

Write image over openOCD/JTAG to a file on the computerAsynchronus capture callback

But we do not only want to take one image,

we want to continously take images in a loop!

For simplicity, we focus on synchronus capture

Set up OS, then jump to test_camera

Open camera

Configure camera registers

Allocated buffers in L2

Asynchronus capture – can queue buffer before starting camera

Wait for capture to end (pi_yield() blocks until an event happens)

Start camera

Blocking capture

Stop and close camera

Apply a kernel

Write image over openOCD/JTAG to a file on the computer

while(1){

}

Great! You now have basically an

universal pipeline for any kernel

you want to run.

H. Müller

|

How do we improve performance?

• Avoid float operations

• Parallelize code

• All cores should execute

similar code on different data

• Example: Inverting kernel

Hands-on: Image acquisition and filtering

AI-deck - Hands-on

16.04.2021 30

Core 0

Core 1

Core 2

0

per_core - 1

Speedup: @50MHz FC and Cluster from 8ms ->1.5ms
H. Müller

PULP PLATFORM
Open Source Hardware, the way it should be!

 http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: AI-deck
The Application Layer

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci, Daniele Palossi

|

Firmware Overview
The Application Layer

 Open-source, available at: https://github.com/bitcraze/crazyflie-firmware.

 Based on FreeRTOS.

 The firmware implements solutions for: state estimation, control, logging,
trajectory planning, etc.

 It implements the sensor drivers and deck drivers.
Deck: a plug-in PCB that is attached to the Crazyflie.

 The user can add new functionalities.

16.04.2021 2V. Niculescu

https://github.com/bitcraze/crazyflie-firmware

|

Firmware Overview
The Application Layer

16.04.2021 3

Firmware
source files

V. Niculescu

|

Firmware Overview – Source Files
The Application Layer

16.04.2021 4

Drivers for the commercially
available Decks

Sensor drivers

Implementation of the stabilizer,
logger, planner, etc

V. Niculescu

|

Developping Your Own Application
The Application Layer

 One option for developing with Crazyflie, is to add the new source files to
the modules or as a new deck.

 Not the best practice, since it alters the firmware and could cause conflicts
with future updates (i.e., git pull conflicts).

16.04.2021 5V. Niculescu

|

Developping Your Own Application
The Application Layer

 The Application Layer feature of the firmware allows the user to develop an
application without changing the firmware.

 The code written within an application, is integrated as a new task and
executed by the scheduler of the main firmware.

16.04.2021 6V. Niculescu

|

Firmware Overview
The Application Layer

16.04.2021 7

Examples on
developing using the
Application Layer

V. Niculescu

|

Example Applications
The Application Layer

16.04.2021 8

Examples on
developing using the
Application Layer

V. Niculescu

|

Example Applications
The Application Layer

16.04.2021 9V. Niculescu

|

Example Application – Hello World
The Application Layer

16.04.2021 10

Project source files.
Contains the new code
developed by the user.

Project’s Makefile. It is
appended to the firmware’s
Makefile. At compilation time,
both the firmware and the
application get compiled.

V. Niculescu

|

Example Application – Hello World
The Application Layer

16.04.2021 11

Source file that contains
the application’s code

V. Niculescu

|

Moving the application outside the firmware
The Application Layer

 The application code can be kept outside the main firmware.

 The app_hello_world project can be moved at the same level with the
crazyflie-firmware folder.

16.04.2021 12

 It is required to inform the application where the firmware folder is located,
by modifying its Makefile.

V. Niculescu

|

The Crazyflie Client - Overview
The Application Layer

16.04.2021 13

 Allows the user to interact with the Crazyflie via USB or Radio

Connect to
the desired
drone.

Observe the attitude

Check drone’s
battery level and
Crazyradio’s
signal strength.

Each tab
represent a
functionality
of the Client.
More can be
added via the
View menu.

V. Niculescu

|

The Crazyflie Client - Console
The Application Layer

16.04.2021 14

 The console displays what is printed in the firmware via the DEBUG_PRINT
function: strings and variables’ values

Result of calling “DEBUG_PRINT("Hello World!\n");” in the code.

V. Niculescu

|

The Crazyflie Client - Plotter
The Application Layer

16.04.2021 15

 Allows plotting the logged variables and monitor their evolution in time.

Select
variables
to plot.

V. Niculescu

|

The AI-Deck
The Application Layer

16.04.2021 16

Crazyflie (STM32)

AI-Deck (GAP8)

C
ra

zy
fl

ie
 +

 A
I-

D
ec

k

Radio dongle

Wi-Fi card

Hands-on 3:
integration & UART

Radio:
NINA Wi-Fi

UART Link

Radio:
Nordic BTLE

nRF51 2.4GHz
Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz
Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

V. Niculescu

|

Application Example
The Application Layer

16.04.2021 17

UART
Communication

AI-Deck

Crazyflie (STM32)

 Example: AI-Deck is sending the value of a counter every 0.5s.

 The Crazyflie prints every value that it receives.

 The Crazyflie uses the UART with DMA, which triggers an interrupt whenever
a certain amount of bytes was received.

V. Niculescu

|

Application Example: UART and DMA
The Application Layer

16.04.2021 18V. Niculescu

|

Application Example: Main
The Application Layer

16.04.2021 19

AI-Deck Crazyflie (STM32)

V. Niculescu

|

Application Example: Main
The Application Layer

16.04.2021 20

AI-Deck Crazyflie (STM32)

Every 0.5s:
increment the
counter and
send its value
via UART

V. Niculescu

|

Application Example: Main
The Application Layer

16.04.2021 21

AI-Deck Crazyflie (STM32)

Every 0.5s:
increment the
counter and
send its value
via UART

Init DMA and
UART

DMA “full
buffer” interrupt

If the flag is set,
print the received
value

Define log

V. Niculescu

|

Hands-on
The Application Layer

16.04.2021 22

Hands-on demonstration of the
system’s functionality

V. Niculescu

PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Bitcraze Workshop: Hands-on Session 4

Wi-Fi image streaming with AI-Deck

Lorenzo Lamberti, Hanna Müller, Vlad Niculescu, Manuele Rusci, Daniele Palossi

|

Hands-on session 4

AI-deck Introduction

16.04.2021 3

Crazyflie (STM32)

AI-Deck (GAP8)

C
ra

z
y
fl

ie
 +

 A
I-

D
e

c
k

Radio:

NINA Wi-Fi

UART Link

Radio:

Nordic BTLE
Radio dongle

Wi-Fi card

nRF51 2.4GHz

Data rate: 0,25/1/2 Mbit/s

NINA-W102 2.4 GHz

Data rate: 6-54 Mbit/s

Data rate: 1 Mbit/s

Hands-on 4: Wi-Fi

image streaming

3

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

16/04/2021

Radio dongle

Wi-Fi card

UART
Communication

Image streaming via Wi-Fi
Control Board (STM32)

AI-Deck (GAP8)

Crazyflie

& AI-Deck

Image

Acquisition

4

We are not using the Bitcraze’s

CrazyRadio to communicate!

|

L. Lamberti

Hands-on overview

Wi-Fi image streaming with AI-Deck

▪ Create a Wi-Fi access-point with the NINA Wi-Fi module

▪ Establish a point-to-point Wi-Fi connection between laptop

and AI-Deck

▪ Acquisition of an image

▪ Compression (JPEG)

▪ Wi-Fi transmission of the image

16/04/2021 8

Default Network SSID:

▪ Bonus task: pre-processing the image before transmission

The example is inside the Bitcraze GitHub repository, and it is called wifi_jpeg_streamer
Code: https://github.com/bitcraze/AIdeck_examples/blob/master/GAP8/test_functionalities/wifi_jpeg_streamer

https://github.com/bitcraze/AIdeck_examples/blob/master/GAP8/test_functionalities/wifi_jpeg_streamer

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

16/04/2021

Wi-Fi Image streaming: Initial setup

Set cores clock freq Allocate memory Open Camera

Set camera registers Open Wi-Fi Open Streamer

Initial Setup

1 2 3

4 5 6

Main loop

Image orientation

(rotate 180°)

FC: Fabric Controller

CL: Cluster (8-cores)

QVGA format (320x240 pixel)

AEG: Auto-Exposure Gain

Input image buffer:

L2 memory allocation

Sets Wi-Fi as TX channel;

Starts JPEG encoder;
Tells NINA to open Wi-Fi access-point;

Set Wi-Fi SSID and port

AI-DeckV1: RGB Bayer

AI-DeckV2: Grayscale

12

Image
acquisition

JPEG
compression

Image
Transmission

|

L. Lamberti

Image
acquisition

JPEG
compression

Image
Transmission

Wi-Fi image streaming with AI-Deck

16/04/2021

AI-DeckV1: RGB Bayer

AI-DeckV2: Grayscale

Wi-Fi Image streaming: Initial setup

Set cores clock freq Allocate memory Open Camera

Set camera registers Open Wi-Fi Open Streamer

Initial Setup

1 2 3

4 5 6

Main loop

Image orientation

(rotate 180°)

FC: Fabric Controller

CL: Cluster (8-cores)

QVGA format (320x240 pixel)

AEG: Auto-Exposure Gain

Image: Static L2 memory

allocation

Sets Wi-Fi as TX channel;

Starts JPEG encoder;

Defines the transmission chunk size;

#define JPEG_BITSTREAM_SIZE (1024)

Tells NINA to open Wi-Fi connection;

Set Wi-Fi SSID and port

13

|

L. Lamberti

for the image (QVGA format)

• CAM_WIDTH = 320

• CAM HEIGHT = 240

We use the L2 memory (512Kb), which is enough for storing an image.

In GAP8 you must specify the target memory for the malloc

(L2 in this case).

2. Allocate the memory

Wi-Fi image streaming with AI-Deck

16/04/2021

Code inspection: Initial setup

We configure the LED GPIO (LED#2) to “output mode”

so that we can control it.

Then we start the blinking task: led_handle()

We specify the format between QVGA and QQVGA

Camera is opened

The AEG= auto-exposure-gain is activated

Open Camera
3

Allocate memory
2

Set cores clock freq
1

3. Open the camera

of the main GAP8’s core (FC = Fabric Controller)

1. Set the core frequency

15

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

16/04/2021

Now the “Bitcraze AI-deck example” SSID will appear in the Wi-Fi

connections available.

We can connect to it with our Laptop (point-to-point).

to rotate the image by 180°

(the image is upside-down by default).

4. Set the camera registers

WIFI:

We open the Wi-Fi connection of the NINA Wi-Fi on-board module.

5. Open Wi-Fi

16

Open Camera
3

Open Wi-Fi
5

Set camera registers
4

Allocate memory
2

Set cores clock freq
1

The configuration of NINA is loaded. To change it, you must

modify the configuration and flash NINA
cd AIdeck_examples/NINA/firmware/
make menuconfig
(then follow instructions to flash NINA)

Code inspection: Initial setup

Instead of opening an access-point, you can also chose to

connect to an existing one

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

16/04/2021

We select Wi-Fi to stream images

We choose the image format

• FRAME_STREAMER_FORMAT_JPEG: enables the JPEG encoder

• FRAME_STREAMER_FORMAT_RAW: does not enable the JPEG

encoder and streams raw images

Image channels: Grayscale=1, RGB =3.

(But the Bayer RGB sensor AI-DeckV1 still uses one channel !)

Hand-shaking between GAP8 and NINA Wi-Fi Module

and the JPEG encoder is started.

6. Open the streamer

18

Open Camera
3

Open Wi-Fi
5

Set camera registers
4

Open Streamer
6

Allocate memory
2

Set cores clock freq
1

Code inspection: Initial setup

|

L. Lamberti

Image
acquisition

JPEG
compression

Image
Transmission

Wi-Fi image streaming with AI-Deck

Code inspection: Wi-Fi images transmission

First image acquisition

starts the Main Loop

Callback: streamer_handler calls the
cam_handler once it’s finished

Callback: cam_handler calls the

streamer_handler once it’s finished

16/04/2021 20

|

L. Lamberti

Hands on the code!!

Wi-Fi image streaming with AI-Deck

16/04/2021 21

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

Image manipulation before TX

16/04/2021 22

We can manipulate the images before sending them via Wi-Fi:
• We will be applying the same inverting() kernel that we used in the Hands-on session 2!

inverting() inverts black & white

in the image

Define a buffer as a global variable

We allocate the memory for another

image in the L2 memory

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

Image manipulation before TX

Callback: streamer_handler calls the
cam_handler once it’s finished

Callback: cam_handler calls the

streamer_handler once it’s finished

16/04/2021 23

We keep the very same loop for transmission that we saw before,

but we manipulate the image with the inverting() function right before

sending it

inverting() inverts black & white

in the image

Image
acquisition

JPEG
compression

Image
Transmission

Main loop

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

Image manipulation before TX

Main loop Callback: streamer_handler calls the
cam_handler once it’s finished

Callback: cam_handler calls the

streamer_handler once it’s finished

16/04/2021 24

We keep the very same loop for transmission that we saw before,

but we manipulate the image with the inverting() function right before

sending it

inverting() inverts black & white

in the image

Image
acquisition

JPEG
compression

Image
Transmission

|

L. Lamberti

Wi-Fi image streaming with AI-Deck

Image manipulation before TX

inverting() (Activated)

inverting() (Deactivated)

This is the behavior that we will experience

2516/04/2021

|

L. Lamberti

Hands on the code!!

Wi-Fi image streaming with AI-Deck

16/04/2021 26

|

L. Lamberti

Thank you for your attention

27

	Bitcraze_Workshop_Intro
	AI-deck_workshop_complete

