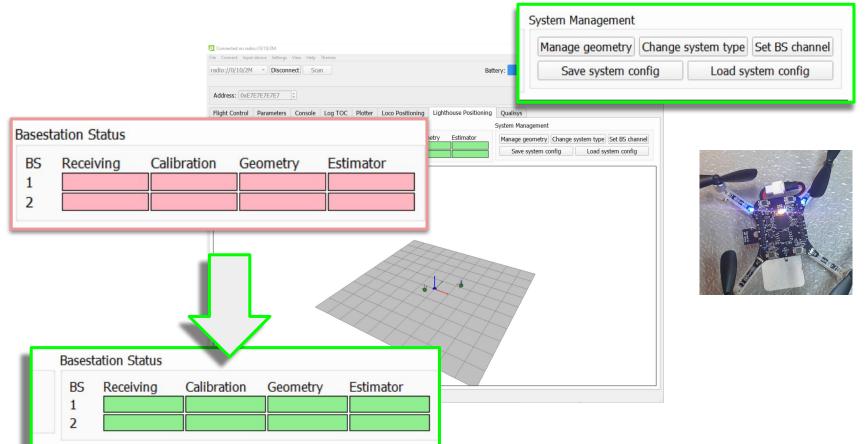


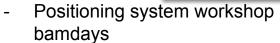
Advanced Lighthouse Usage Workshop

Kimberly (Bitcraze) BAM days 19 October 2021

Advanced Lighthouse Usage Workshop



BAM days 19 October 2021


Lighthouse Tab CFclient

Content

- Lighthouse Base station mechanics
- Lightsweep decoding
- Calibration Model
- BS Geometry estimation
- On-board Pose Estimation
- Extra
 - Geometry file saving (swarms)
 - More than 2 base stations

Prerequisites:

Crazyflie and positioning

BAM days

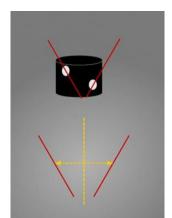
• • • **†**

- <u>Getting started with Lighthouse</u> <u>Positioning Tutorial</u>

Getting started with the Lighthouse system Etome / Documentation / <u>Tutorials</u> / Getting started with the Lighthouse system Introduction Preparing the Crazyflie Preparing the base stations Preparing the base stations Preparing the System Test flight Userguides and theory

Lighthouse Base Station

- Steam VR base stations 2.0 by Valve
- Different channels

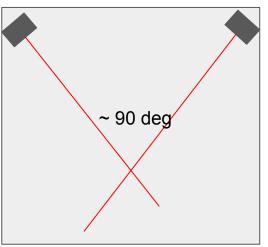

lanage geometry	Change	e system type	Set BS chan	nel
Save system co	onfig	Load sy	stem config	
Basestation config	uration	-	- 🗆 ×	<
Lighthouse V2		-		l.
Connect only 1 Dases	station witi			
	station wit	Scan b	asestation	
USB port: Current channel:				
USB port:		Scan b COM6		
USB port: Current channel:		Scan b COM6 2	asestation	

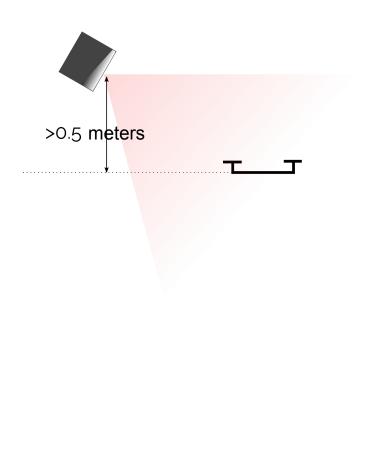
Basestation Status

BS	Receiving	Calibration	Geometry	Estimator
1				
2				

Mechanics Base station

- Infrared light sweep
- FOV
 - $\circ~$ H: 150 deg / V 110 deg
- Single drum with 2 tilted beam \ /
 - \circ 30 degrees from the center
- Two pulse / turn @ ~50Hz
- Different channels = Different polynqmials
 - No syncing necessary
 - >2 basestations
 - Interference

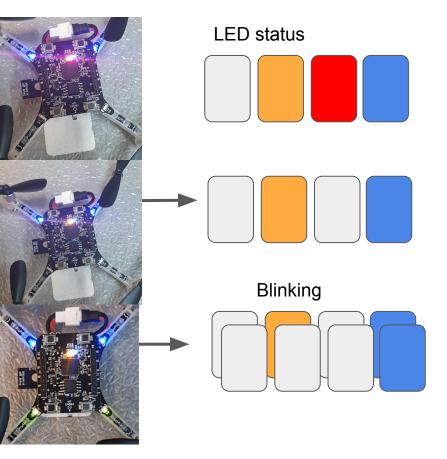

-t



Basestation placement

- Flight area
 - 5 x 5 x 3 meters
 - Very little sunlight
 - No or very little reflections

Top view

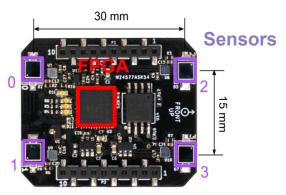

Receiving status

• Not receiving sweeps

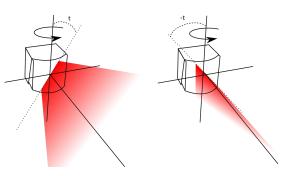
Basestation Status

BS	Receiving	Calibration	Geometry	Estimator
1				
2				

Receiving sweeps, no geo data
 Basestation Status
 BS Receiving Calibration Geometry Estimator
 1
 2



Decoding sweeps


- Sweeps hit the light sensor
 - Time stamp
- Data encoded in Sweep
 - Start of revolution (offset)
 - Basestation Identification
 - Calibration data
- Need 2 sensors for decoding offset, identity and channel

Sensor:1	TS:16159895	offset:151736	Chan: 2(0))
Sensor:0	TS:16160332	offset:151736	Chan: 2(0))
Sensor:3	TS:16161232	offset:151736	Chan: 2(0))
Sensor:2	TS:16161686	offset:151736	Chan: 2(0))
Sensor:0	TS:16308402	offset:335460	Chan: 3(0))
Sensor:1	TS:16308740	offset:335460	Chan: 3(0))
Sensor:2	TS:16309669	offset:335460	Chan: 3(0))
Sensor:3	TS:16309995	offset:335460	Chan: 3(0))

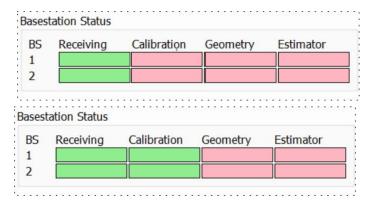
• Timestamp and offset-> Sweep angle.

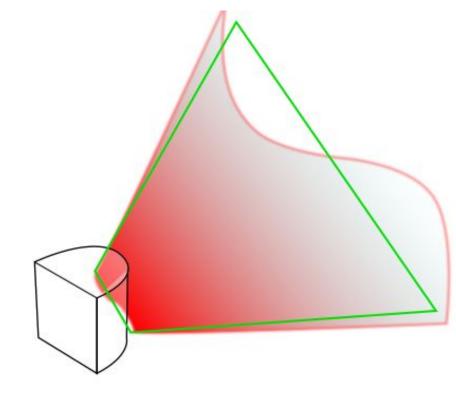
Lighthouse positioning deck.

Interference

- Sweeps of 2 basestations hit the sensors at the same time
- Timestamps are then disregarded

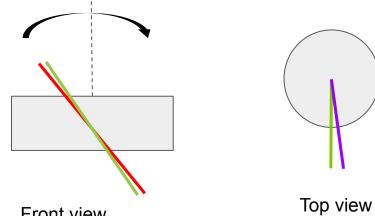
Sensor:1	TS:16059976	offset: -	Chan: 3(0)
Sensor:0	TS:16060303	offset:168352	Chan: 3(0)
Sensor:1	TS:16060606	offset: -	Chan: 2(0)
Sensor:0	TS:16060987	offset:153272	Chan: 2(0)
Sensor:3	TS:16061124	offset: -	Chan: -(-)
Sensor:2	TS:16061464	offset: -	Chan: -(-)
Sensor:3	TS:16062268	offset: -	Chan: 2(0)
Sensor:2	TS:16062653	offset:154936	Chan: 2(0)


Calibration values


- Slow bits from decoding

Sensor:0 TS:16060303 offset:168352 Chan: 3(0)

- Takes about 20 seconds
- Console output:


LH: Got calibration from F4A1A908 on channel 2 LH: Got calibration from 202A870D on channel 1

Calibration values meaning

- **Reversed engineering**
- For each lightplane
 - Motor calibration Ο
 - Tilt (error of lightplane tilt)
 - Phase (error rotating drum)
 - Distortion Ο
 - Gibphase / -mag (Compression along the sweep?)
 - Curve (Curvature of lightplane?)
 - Ogeephase/ -mag (Shape of lightplane?)

Front view

60

0 0

-60

Calibration model we implemented

 δt_{calib}

 δp_{calib}

 ${\sf g}_{\sf mag, calib}$

9_{phase, calib}

- Input:
 - x, y, z (location of sensor)
 - Calibration data
 - Tilt error:
 - Phase error:
 - Gibbous magnitude :
 - Gibbous Phase:
- Output: distorted angle
- Unused data: Curve and Ogeemag/phase
- Crazyflie-firmware
 - <u>utils/lighthouse_calibration.c</u>

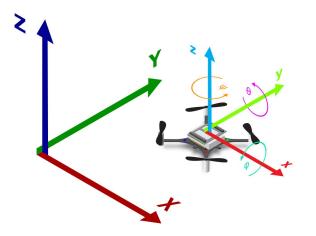
$$a_x = \arctan 2\left(\frac{x}{y}\right)$$
$$b = a_x + \arcsin\left(\frac{z - \tan(t - \delta t_{calib})}{r}\right)$$
$$g_{comp} = -g_{mag,calib} \cdot \cos(a_x + g_{phase,calib})$$
$$\alpha_{dist} = b - \delta p_{calib} + g_{comp}$$

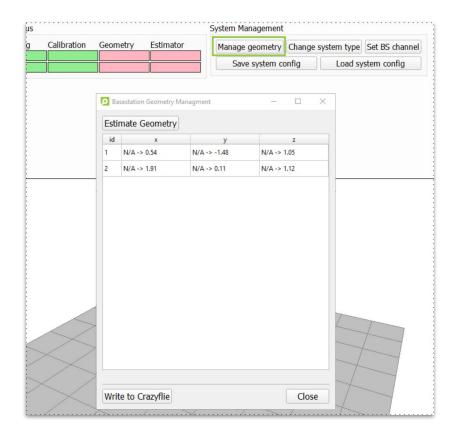
Calibration model we implemented

- Input:
 - x, y, z (location of sensor)
 - Calibration data
 - Tilt error:
 - Phase error:
 - Gibbous magnitude :
 - Gibbous Phase:

δt_{calib} δp_{calib} g_{mag,calib} g_{phase, calib}

- Output: distorted angle
- Unused data: Curve and Ogeemag/phase
- Crazyflie-firmware
 - utils/lighthouse_calibration.c


- Libsurvive uses a different calibration model
 - <u>survive_reproject_gen2.c</u>


$$a_x = \arctan 2\left(\frac{x}{y}\right)$$
$$b = a_x + \arcsin\left(\frac{z - \tan(t - \delta t_{calib})}{r}\right)$$
$$g_{comp} = -g_{mag,calib} \cdot \cos(a_x + g_{phasc,calib})$$
$$\alpha_{dist} = b - \delta p_{calib} + g_{comp}$$

Limitations Calibration

- Takes long time to receive calibration values
- Calibration model
 - Still up to 10 cm inaccuracy at the edges FOV Base stations
 - We don't use curve or ogee values...

Geometry Estimation

Geometry Estimation

- Translation and orientation
- Finds an object pose from 3D-2D point correspondences
 - Basestation is a 'camera'
- <u>Crazyflie-lib-python/cflib/localiza</u>
 <u>tion</u>
 - Documentation?
- OpenCV
 - o <u>solvePnP</u>
 - Give an initial estimate

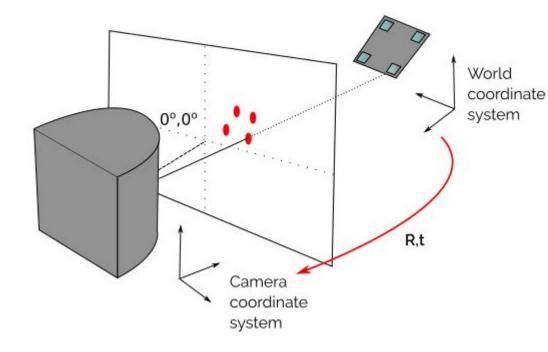


Image inspired by solvepnp description (https://docs.opencv.org/)

Persistent Memory

- Saving data between reboots
- Geometry and Calibration data
- Double checking Calibration data
 - Using calibration data directly from persistent memory
 - Calibration matches current system
 - Calibration of persistent memory does not match the current system
- Switching between different Lighthouse systems -> Orange warning.
 - Press estimate geometry again to resolve this.

BS R	eceiving	Calibration	Geometry	Estimator
1				

Basestation Status

BS	Receiving	Calibration	Geometry	Estimator
1				
2				

Basestation Status BS Receiving Calibration Geometry Estimator 1 2

Saving config data in a File

- System Management Manage geometry Change system type Set BS channel Save system config Load system config
- Config saved for each basestation in .yaml
 - Geometry
 - Calibration
- Handy for:
 - Multiple lighthouse systems in different rooms
 - Unified coordinate system in a swarm
- Swarms
 - Use on one crazyflie for geometry estimation,
 - Save the *.yaml with 'Save System Config'
 - Connect to the other crazyflies one by one
 - Upload data in yaml in persistent memory by 'Load system config'

Limitations geometry estimation

- OpenCV python library (gives problems to cfclient)
- Initial position guess needed for a correct estimation
- Using only one position to estimate:
 - Origin coordinate system
 - Basestation pose
 - maybe better to use multiple different positions, like in MoCap ?

Position estimation

- State estimation
- Different methods
 - Crossing beam
 - EKF measurement model

Basestation	Status
-------------	--------

BS	Receiving	Calibration	Geometry	Estimator
1				
2				

Basestation Status

BS	Receiving	Calibration	Geometry	Estimator
1				(+
2				

Crossing Beam

- Two LH Base Stations
- Intersection of both sweep planes (rays)
- Closest distance between
 lines
- Lighthouse_position_est.c

$$p_{1,s}, p_{2,s} = rgmin_{p_1 \in r_{1,s}, p_2 \in r_{1,s}} \|p_1 - p_2\|_2$$

Base station 1

 \mathbf{r}_1

Sensor

р

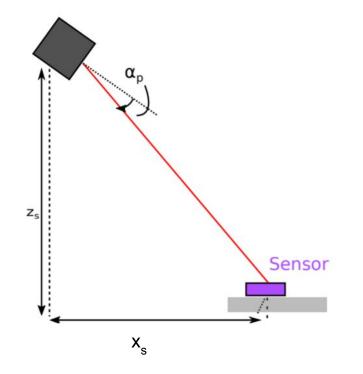
Base station 2

 \mathbf{r}_2

LH deck

Position

 \mathbf{p}_2


http://geomalgorithms.com/a07-_distance.html#Distance-between-Lines

Measurement model Light plans

- Extended Kalman Filter (EKF)
- Raw IR light sweep angles
- Measurement model
 - Position estimate
 - To wanted sweep angles

$$\begin{split} \alpha_p &= \arctan \frac{y_s}{x_s} + \arcsin \frac{z_s \tan t_p}{r_s}, \\ \text{where } r_s &= \sqrt{x_s^2 + y_s^2}. \end{split}$$

- Calibration model included in implementation
- kalman_core/mm_sweep_angles.c

Limitations

Crossing beam:

- - Only works with 2 base stations
- + Currently more stable
 - If both basestations are visible

EKF:

- + can work with any number of base stations
- - has some flight stability issues sometimes
- You can switch between crossing beam or EKF positioning method with the <u>parameter lighthouse.method</u> (0= crossing beam, 1= EKF)

Variables			
Name	Core	Туре	Description
lighthouse.method	Core	PARAM_UINT8	Estimation Method: 0:CrossingBeam, 1:Sweep in EKF (default: 1)

Some handy information about position estimation!

- Lighthouse does yaw estimation (not full pose)
 - Lighthouse_positioning_est.c / estimateyaw()

- You can use lighthouse in ground truth mode
 - No lighthouse sweeps will be sent to the estimator
 - Put CFLAGS += -DLIGHTHOUSE_AS_GROUNDTRUTH in config.mk, build and reflash the crazyflie-firmware and look at log lighthouse.x/y/z
 - This is only possible with crossing beam

More than 2 base stations

We don't officially support this ... but yes it is possible!

PULSE PROCESSOR N BASE STATIONS in <u>pulse processor.h</u>

This should work to up to 16 basestations

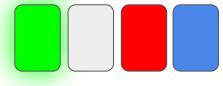
BUT....

Geometry estimation tools only compatible with 2 basestations at the time

Interference: No more than 4 should be visible at the same time (ideally only 2)

Creativity necessary: App layer or Config file, and the forum :)

Also check out the hyper demo we did a year ago: https://www.bitcraze.io/2020/12/the-hyper-demo/


All is good!

dio://0/10/2M · Disconnect	Scan Batter	4.086 volts Link Quality:
ddress: 0xE7E7E7E7 0		
ight Control Parameters Conse		Qualisys
razyflie status		stem Management
Status: LH ready Position: (-0.00, -0.00, -0.00)	BS Receiving Calibration Geometry Estimator	Manage geometry Change system type Set BS channel
	2	Save system config Load system config

Basestation Status

BS	Receiving	Calibration	Geometry	Estimator
1				
2				

Finally

Possible improvements

- Out of early access.... But not perfect!
- Calibration model can be improved
- Better error distribution by the geometry estimation
- No easy setup for more than 2 base-stations

Recourses

www.bitcraze.io/lighthouse

Lighthouse Positioning System: Dataset, Accuracy, and Precision for UAV Research

ICRA 2021 Workshop

[2104.11523] Lighthouse Positioning System: Dataset. Accuracy. and Precision for UAV Research (arxiv.org)