
Autonomy and app layer 
Workshop
Arnaud (Bitcraze)

BAM days 
October 20th 2021



Example: The push demo

● Uses the multiranger deck and the 
flow deck

● Allows to push the Crazyflie around:
○ If an object is detected, move in the 

opposite direction
○ If an object is detected on the top, land

● Simple interactive demo to 
experiment with autonomous 
behaviors

Hover

Move 
opposite 
direction

Multiranger 
sees 
something

Path is 
clear

State machine



Controlling the Crazyflie

3



Basic architecture

● Multiranger, Control loop, Log and Setpoint live in the Crazyflie
● Where does the push algorithm go?

○ On PC as a python program?
○ In the Crazyflie? Where and how?

Multiranger

Control loop

Log

Setpoint

Push 
Algorithm



Writing algorithm on the PC

push.py

cflib

Crazyflie

Radio link

Radio

Radio Link

LogSetpoint

Ctrl loop Multiranger

Crazyflie PC
● From Python we use the package 

“cflib”.
● URI are used to tell the lib what 

Crazyflie to connect to and how. Eg. 
“radio://0/80/2M/E7E7E7E7E7”

○ Dongle, channel, datarate, address
● Cflib implement supports for 

Crazyflie subsystems, some deck 
even have specific driver

○ The multiranger is one of those



Sending setpoints

● “Low level” commander
○ Instantaneous setpoints, needs to be sent at regular intervals
○ 1 second watchdog

● High-level commander
○ Planner running in the Crazyflie

● Motion commander
○ Flow-deck-optimized planner running in cflib

“Low level” Commander High level commander

Motion commandercflib

Crazyflie



Motion Commander

Motion commander:
Take off
Forward
Sideways
Turn
Fly a circle
etc.

Setpoints

Cflib
(python)Python 

script

Onboard the 
Crazyflie (C)

planner

Stabilizer 
module



multiranger_push.py

Hover

Move 
opposite 
direction

Multiranger 
sees 
something

Path is 
clear

State machine



Running onboard: App layer

● Traditional way
○ Get the Crazyflie firmware source code
○ Find a place to put your code
○ Write code
○ Now you have a fork, hard to maintain over time

● Out Of Tree build
○ No need to fork!
○ Where does the code go?

● App layer
○ Will call “appInit()” during startup
○ “appInit()” default implementation calls “appMain()” in a thread after POST

● OOT + App layer
○ No more fork, Crazyflie firmware can be a git submodule, much happiness!



Crazyflie boot sequence (illustration)

Main.c System taskStart RTOS
Communication init

Driver init

App init
App task

appMain()

Substytem init

POST

System Start

Worker
loop

Call appMain



demos/app_push_demo/

Makefile

push.c

Get parameters

Get Logs .
.
.

Send Setpoints

App layer

OOT build



More hooks, better API and future

● Hooks exists to implement an OOT estimator
● More hooks can/should be added to enable more OOT experiments

○ What do you need?
● Experiments to improve the build system using KBuild

○ One plan is to host most useful but niche functionality in our repos not compiled by default
● The in-firmware API should be improved and defined

○ Ideally, the same functionality would be available roughly the same way in Python and in the 
Firmware, to ease algorithm port

● The Crazyflie could run uPython, is it interesting?
○ Could allow to directly port code from the PC to the firmware with few to no modifications



Questions?


