
A Distributed Autonomous 
Swarm 

or
how to tear down the Control Tower

BAM days 
21 October 2021

Kristoffer Richardsson



Contents

● The “old” swarm demo
● The new swarm demo
● The Pilot

○ State machine
● The Distributed Control Tower

○ Radio communication principles
○ The shared swarm state
○ Flight planning
○ Distributed consensus
○ State machine

● Live demo



The “old” swarm demo

● Has been used since 2019 in various flavours
● Hybrid implementation

○ Crazyflies use an on-board application that manages the flight (called “the pilot”)
○ A python “control tower” runs on a PC and controls when a Crazyflie takes-off or 

lands

http://www.youtube.com/watch?v=OmnDqUjj42M&t=20


The “old” swarm demo - the Pilot

● An application on-board
● Fixed spiral trajectory
● When started it runs a deterministic 

trajectory
● Samples start point before take-off to be 

used as landing position
● Re-charge battery on charging pad
● Reposition if not charging
● Crash report to the tower 



The “old” swarm demo - The Control tower

● Monitors battery levels
● Monitors who is flying (or has crashed)
● Simple commands to the pilot

○ Take-off
○ Land

● GUI
● Support for multiple Crazyflies flying at the same time

○ Slotted spiral
○ synchronized formation



The new swarm demo

Goals:

● No central Control Tower - distributed decision of when to take off
● P2P communication between Crazyflies
● No collisions
● Slot into the spiral at the right time



The Pilot

● Very similar to the old demo
● An application on-board
● Fixed spiral trajectory
● When started it runs a deterministic 

trajectory
● Samples start point before take-off to be 

used as landing position
● Re-charge battery on charging pad
● Reposition if not charging



The Pilot state machine

Wait for 
position lockStart Standby Take-off Goto initial 

position

Fly the spiral

Goto padLandIs 
charging?

Take-off and 
reposition

Yes

No

Input from the distributed Tower

Prepare

Land and charge



The distributed control tower

● Implemented in the Crazyflie application
● Uses P2P communication
● Keeps track of the shared swarm state
● Monitors the flight of other Crazyflies 
● Monitors the battery level
● Triggers the take-off in the pilot state machine



P2P radio communication

● P2P support in the Crazyflie firmware (experimental)
● Broadcast functionality
● An application can implement unicast on the protocol level, in 

this application we use broadcast



Time-slotted TX scheme

● The radio can not RX and 
TX at the same time

● A transaction is one 
request with responses 
from all peers

● Use time slots (20 ms) 
based on RX time and 
node id

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8

Time



Broadcast retransmission

● Packets are lost
● Too many lost packets causes 

delays on higher levels
● Handled by transmitting all 

packets 5 times in bursts
● A sequence number in the 

packets is used to determine if 
the packet has already been 
received

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8

Time

Close up!



Transaction holdback

● Transactions often come in 
pairs

● Randomized holdback time 
to avoid transaction collisions

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8

Time

Holdback time

First potential 
TX time for 
Node 2



The shared swarm state

● A shared state with three time-out locks
● Each lock represents a flying Crazyflie

○ Two locks for the two flying Crazyflies
○ One lock for the Crazyflie that will take off next

● When a lock expires another Crazyflie is free to take the lock and 
set a new end time

● Time-out locks will expire automatically and do not require 
communication to be released.

● A complication is that the clocks in the Crazyflies are not 
synchronized, use relative time when communicating the state

Node-id, expiry time Node-id, expiry time Node-id, expiry time



Flight planning

When the currently flying CF is going 
back to the pad the next one takes off

(We also tried to let two Crazyflies fly at 
the same time with a spacing of ~½ spiral 
cycle time. Sometimes we got problems 
with downwash when entering/leaving the 
spiral and abandoned the idea.)



Distributed consensus

● Loosely based on Paxos
● Majority (5 nodes) required for consensus
● Two phase commit
● We use broadcast instead of unicast
● Packets are lost - must be supported
● All nodes are “nice” and behave as expected



Phase 1 - prepare for state update

8

6

0

7

5

4

3

2

1

Proposition, 17

Promise, 17

Majority, proceed 
to phase 2!



Phase 2 - update state

8

6

0

7

5

4

3

2

1

State update 
request, 17 + 
the new state

State update 
Accept, 17

Majority, the new 
state can be used!



Phase 1 - swarm state out of synch

8

6

0

7

5

4

3

2

1

Proposition, 17

Promise, 17, 
4711 + state

No majority, got 
later state!

Promise, 17



Phase 2 - swarm state out of synch

8

6

0

7

5

4

3

2

1

State update 
request, 4711 + 
the corrected 

state

State update 
Accept, 4711

Got the corrected 
state and can start 
over with phase 1



Control tower state machine

Idle
Check 
status Wait for 

promise

Plan 
flight

Wait for 
accepted state 

update
Flying!

Send 
Proposition to 

peers

Send State 
Update 

Request to 
peers

Send State 
Update 

Request to 
peers



Hardware and code

We used:

● 9 Crazyflies with Lighthouse decks and Qi charger decks
● 2 Lighthouse V2 base stations
● Qi chargers from IKEA with 3D-printed pads

● A Computer with a Crazyradio for starting/stopping the demo
● A Crazyflie (connected via USB) for sniffing

The code is available in 
https://github.com/bitcraze/crazyflie-firmware-experimental/tree/bam-2021

https://github.com/bitcraze/crazyflie-firmware-experimental/tree/bam-2021


What did we learn?

● Losing more packets than expected
● Debugging when using P2P is not easy
● Distributed consensus is tricky
● Found some issues related to P2P and the High Level 

Commander



Live demo!


