
Rust and the Crazyflie 
Workshop

Arnaud (Bitcraze)
BAM days 

October 20th 2021



The Rust language

● Started in 2009 at Mozilla
● 1.0 in 2015
● Stable language

○ Stability guarantee since 1.0
○ Optional editions: 2015, 2018 and 2021. Improves the language without breaking compatibility.
○ Rust foundation started in 2021

● Performant
○ Compiles to machine code (using LLVM)
○ Allows low level access to the machine

● Reliable
○ Strongly typed with type inference
○ Memory safe: no possible data race

● Productive
○ Modern tooling, package manager, Convention over Configuration
○ Helpful compiler error message: a bad error message is considered a bug by the compiler team



Rust at Bitcraze

● Shipping printer
● Crazyradio/Crazyflie-link/Crazyflie-lib

○ Base for a web-client when compiled to Wasm
○ Binding possible to Python, C++, Ros, …
○ Crazy-mouse

● Rust in the firmware
○ Deck driver
○ Crazyflie APP <=- This talk
○ Crazyflie2-stm bootloader re-implentation

https://crates.io/crates/crazyradio
https://crates.io/crates/crazyflie-link
https://github.com/ataffanel/crazyflie-lib-rs
https://github.com/jonasdn/crazymouse
https://github.com/bitcraze/crazyflie-firmware/pull/753
https://github.com/ataffanel/crazyflie-app-hello-rs
https://github.com/ataffanel/crazyflie2-stm-bootloader-rs


Intro to Rust: Variables and Functions



Intro to Rust, Struct and Impl



Intro to rust: Ownership

● Simple enough code but…
● This will not compile!



Intro to rust: Ownership

Link to Rust playground

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3b04b5a12c3a2e3513a9d359991c9920


Intro to rust: Ownership



Ownership for better API: Mutex

Mutex usage in storage.c 

Mutex init is decoupled from what it protects

Locking and unlocking the mutex is manual:

Possible implementation in Rust

Mutex takes ownership of what it protects

Impossible to use the protected object without 
locking the mutex: 



Rust in embedded

● Little to no runtime
● Performant, compile to machine code
● Standard library optional: no_std
● Lots of common crates supports no_std

○ Data serialization/deserialization
○ Cryptography
○ A growing ecosystem of embedded-specific crate (eg. heapless)

● Embedded-hal: interface standardisation to allow for hardware abstracted 
programs and drivers

● Type-safe hardware drivers!
● Great tooling (eg. probe-run, defmt)

https://github.com/knurling-rs/probe-run
https://github.com/knurling-rs/defmt


Lets code!



Future?

● Finishing the Rust Crazyflie-lib
● Experimenting with Rust in the firmware:

○ Crazyflie-sys and Crazyflie-app crate in crates.io
○ Would allow to “just” add crazyflie-app=”2021.02” to cargo.toml to get started

● Some future utility firmware might be written in Rust (ie. Bootloader, 
Crazyradio or Crazyflie’s radio nRF firmware would be good candidates)

● No current plan to (re)write any major firmwares in Rust



Questions?


