Rust and the Crazyflie
Workshop

Arnaud (Bitcraze)
BAM days
October 20th 2021

The Rust language

e Started in 2009 at Mozilla
1.0in 2015

e Stable language
o Stability guarantee since 1.0
o Optional editions: 2015, 2018 and 2021. Improves the language without breaking compatibility.
o Rust foundation started in 2021
e Performant
o Compiles to machine code (using LLVM)
o Allows low level access to the machine
e Reliable
o Strongly typed with type inference
o Memory safe: no possible data race
e Productive
o Modern tooling, package manager, Convention over Configuration
o Helpful compiler error message: a bad error message is considered a bug by the compiler team

Rust at Bitcraze

e Shipping printer

e Crazyradio/Crazyflie-link/Crazyflie-lib
o Base for a web-client when compiled to Wasm
o Binding possible to Python, C++, Ros, ...
o Crazy-mouse

e Rust in the firmware

o Deck driver
o Crazyflie APP <=- This talk
o Crazyflie2-stm bootloader re-implentation

https://crates.io/crates/crazyradio
https://crates.io/crates/crazyflie-link
https://github.com/ataffanel/crazyflie-lib-rs
https://github.com/jonasdn/crazymouse
https://github.com/bitcraze/crazyflie-firmware/pull/753
https://github.com/ataffanel/crazyflie-app-hello-rs
https://github.com/ataffanel/crazyflie2-stm-bootloader-rs

Intro to Rust; Variables and Functions

- fn add(a: 132, b: 132) -> 132 {

a+b
}
- fn main() {
let x = 1;

let mut vy = 2;
y = add(x, y);

printlnl (s {3 yv: 1", %, ¥);

Intro to Rust, Struct and Impl

#[derive(Debug,Clone)] - fn main() {
~ struct z;;’nt { let pl = Point::new(1.0, 2.0);
p & 5 = S g .
y: £32, let p2 Point::new(2.0, 3.0);
}
let p3 = pl.add(&p2);
= impl Point {
- pub fn new(x: f32, y: f32) -> Point { BFIAELRI (N 0 F 43 F 52w Pl; P2 P3);
Point { x, vy} }
}

4

pub fn add(&self, other: &Point) -> Point {
- Point {

x: self.x + other.x,

y: self.y + other.y,

Intro to rust: Ownership

e Simple enough code but...

1 fn calculate_length(s: String) —> usize { e This will not compile!
2 s.len()

3.}

4

5 fn main() {

6 let s = String::from("Hello");

8 let length = calculate_length(s);

9

10 println!(“Length of {} is {}", s, length);
193

fn calculate_length(s: String) isize {

Intro to rust: Ownership W el

fn main() {

Link to RUSt Dlavquund let s = String::from("Hello");

let length = calculate_length(s);

println!("Length of {} is {}", s, length);

-

Compiling playground v0.0.1 (/playground)
error[E0382]: borrow of moved value: °s°
-=> src/main.rs:10:36

A value borrowed here after move

6 | let s = String::from("Hello");
| - move occurs because ‘s’ has type “String’, which does not implement the “Copy’ trait
7|
8 | let length = calculate_length(s);
| - value moved here
° |
10 | println! ("Length of {} is {}", s, length);
|

For more information about this error, try ‘rustc --explain E0382".

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3b04b5a12c3a2e3513a9d359991c9920

Intro to rUSt OwnerShlp fn calculate_length(s: &String) isize {

s.len()
5 fn main() {

let s = String::from("Hello");

let length = calculate_length(&s);
10 println!("Length of {} is {}", s, length);
11 }
Compiling playground v0.0.1 (/playground)

Finished dev [unoptimized + debuginfo] target(s) in 1.01s
Running "target/debug/playground’

Length of Hello 1is 5

impl<T> Mutex<T> {

Ownership for better API: Mutex e e o
Mutex usage in storage.c Possible implementation in Rust
Mutex init is decoupled from what it protects Mutex takes ownership of what it protects

122 void storageInit() let kve_storage = Kve::new();

123 { let kve = Mutex::new(kve_storage);

124 storageMutex = xSemaphoreCreateMutex(); // Here, kve_storage is not accessible anymore

// it is owned by the mutex

Impossible to use the protected object without

Locking and unlocking the mutex is manual: _
locking the mutex:

157 xSemaphoreTake(storageMutex, portMAX_DELAY); // The only way to access kve_storage

158 // is to lock the mutex

159 bool result = kveStore(&kve, key, buffer, length); let result = kve.lock().store(key, buffer);
160

161 xSemaphoreGive(storageMutex) ;

Rust in embedded

Little to no runtime
Performant, compile to machine code
Standard library optional: no_std

Lots of common crates supports no_std
o Data serialization/deserialization
o Cryptography
o Agrowing ecosystem of embedded-specific crate (eg. heapless)

e Embedded-hal: interface standardisation to allow for hardware abstracted
programs and drivers

e Type-safe hardware drivers!

e Great tooling (eg. probe-run, defmt)

https://github.com/knurling-rs/probe-run
https://github.com/knurling-rs/defmt

Lets code!

Future?

e Finishing the Rust Crazyflie-lib

e Experimenting with Rust in the firmware:

o Crazyflie-sys and Crazyflie-app crate in crates.io
o Would allow to “just” add crazyflie-app="2021.02” to cargo.toml to get started

e Some future utility firmware might be written in Rust (ie. Bootloader,
Crazyradio or Crazyflie’s radio nRF firmware would be good candidates)
e No current plan to (re)write any major firmwares in Rust

Questions?

