
Spiraling Swarm Demo
Tutorial Lecture

4th of November, 18:00 CET

bitcraze 1

Technicalities

● Discord-only participants
○ Voice is disabled on the #tutorial_video

○ Use the #tutorial_chat to ask questions

● Mozilla hubs
○ The link to the Mozilla Hubs room can be found in #tutorial_chat in Discord

○ You need to sign in with your email address that you used for Discord

○ Make sure that you disconnect from #tutorial_video or mute it since it will cause an echo

○ Please press mute during the sessions

○ Use the chat box in Mozilla hubs to ask questions

○ During break & socializing you can unmute yourself

● The full tutorial will be recorded and slides will become available.

2

Introduction to Bitcraze AB
● Who are we?

○ Crazyflie
○ Hardware Development

● Where are we?
○ Malmö, Sweden

● All the team members?
○ Tobias
○ Marcus
○ Kristoffer
○ Arnaud
○ Barbara
○ Kimberly

3

Crazyflie

● Quadrotor

● Used by:
○ Hobbyist

○ Researchers

○ Educators in Aerial Robotics

○ Shows

● Open Source firmware

● Modular Design

4

Modular Design

5

Our demo

6

Positioning system

Charging station

Crazyflies

Control tower

6

Video

7

http://www.youtube.com/watch?v=OmnDqUjj42M

Topics of today

● 18:00
○ 35 min: Positioning - Lighthouse V2

○ 10 min: Questions

● 18:45: break

● 19:00:
○ 35 min: Communication - Swarm Autonomy

○ 10 min: Questions

● 19:45
○ Socializing :)

8

Positioning

● Crazyflie need to know where it is

● Types of positioning:
○ Relative positioning

○ Absolute positioning

■ Onboard estimate

■ Offboard estimate

9

Lighthouse Positioning

● Valve Corporation - Basestations

● Virtual Reality

● Early access

● Mm precision

https://store.steampowered.com/app/1059570/Valve_Index_Base_Station/ 10

Mechanics Basestations

V1 V2

11

Lightsweeps

V1 V2

12

Lightsweeps to Sensor

13

Hands-on: Setting up the basestations

● Setting up the basestations

● Powering them

● Put a crazyflie in the middle

● Show the angles in the cfclient

14

Two methods:

● Crossing beams
○ Only with two basestations

● Raw sweeps
○ Kalman filter measurement model

○ Basestation are decoupled

Lighthouse to position

www.bitcraze.io : Documentation ->

system overview -> Positioning Systems

-> Lighthouse positioning system
15

Calibration Lighthouse

● Light sweeps are not perfect

● Reflections of glass

● Motor calibration

● Curvation

16

Hands-on: Getting calibration data V2

● Show the CFclient with console
○ Takes about 1 minute though...

● Alternative way with basestation and microusb
○ Find location of device with dmesg

○ python3 get_lh2_calib_data.py --dev /dev/ttyACM0

● How to change mode permanently
○ picocom /dev/ACM0

○ See which mode its in mode

○ Set new mode mode 2

○ Save parameters to make permanent param save

This is only necessary for
Basestation V2!

Basestation V1 receives the
calibration data so quickly
that you don’t need to
hardcode it at all!

17

Calibration Values

● For each lightplane
○ Motor calibration

■ Tilt (error of lightplane tilt)

■ Phase (error rotating drum)

○ Distortion

■ Gibphase / -mag (Compression

along the sweep)

■ Curve (Curvature of lightplane)

■ Ogeephase/ -mag (only V2)

(Shape of lightplane)

○ All speculations !! Top view

0°

18

-60°60°

Implementation calibration values

● Libsurvive (survive_reproject_gen2.c)

● Ours (lighthouse_calibration.c):
○ V1

○ V2

For V2: Curve and OGee are not used!

 const float ax = atan2f(y, x);

 const float r = arm_sqrt(x * x + y * y);

 const float base = ax + asinf(clip1(z * tanf(t - calib->tilt) / r));

 const float compGib = -calib->gibmag * arm_cos_f32(ax + calib->gibphase);

 return base - (calib->phase + compGib);

 const float ax = atan2f(y, x);

 const float ay = atan2f(z, x);

 const float r = arm_sqrt(x * x + y * y);

 const float compTilt = asinf(clip1(z * tanf(calib->tilt) / r));

 const float compGib = -calib->gibmag * arm_sin_f32(ax + calib->gibphase);

 const float compCurve = calib->curve * ay * ay;

 return ax - (compTilt + calib->phase + compGib + compCurve);

19

Hands-on: Implement calibration data

● Go to examples/app_api

● Check makefile if lighthouse deck is on

● Flash crazyflie
○ python3 -m cfloader flash cf2.bin stm32-fw -w radio://0/10/2M/E7E7E7E709

● Reboot for lighthouse deck
○ python3 ../../tools/utils/reboot.py radio://0/10/2M/E7E7E7E709

● Show the compensated angels in the logging tab cfclient

20

Find geometry basestations

● Translation and orientation

● Finds an object pose from

3D-2D point

correspondences

○ Treats the basestation

as a ‘camera’

● OpenCV
○ solvePnP

Inspired by solvepnp description (https://docs.opencv.org/)

21

Hands-on: Getting Geometry Data

● Go to tools/lighthouse

● Get geometry data:
○ ./get_bs_geometry.py --uri radio://0/10/2M/E7E7E7E709

○ Always double check geometry if it looks okay!

● Flash firmware with geometry (or use flag --write)

● Show plotter for position estimate

● Show position estimate if calibration is turned on or off

22

Hands-on: Crazyflie flying in lighthouse

● Show spiral python script
○ Python3 fly_spiral.py

23

Lighthouse v2 : left to do

● Early release and subject to change

● Calibration implementation is not perfect
○ Maybe you want to help?? :)

● Add support for more than 2 basestations

● Adding support in tools in the client

24

Break and questions

We will start setting wireless chargers and more crazyflies in the meantime ;)

Swarm demo flying in the next hour!

See you back at 19:00 CET

25

Demo for Swarms

● Communication

● Autonomy
○ Highlevel commander

○ App layer

26

Communication

● Broadcasting
○ Messages with no return expected

● Multiple crazyflies per crazyradio

● Use same channel

● Can not send specific trajectories

at each time step

● Crazyflies need to do more

themselves

0xE7E7E7E701

0xE7E7E7E702 0xE7E7E7E703

27

Communication bandwidth limit

28

Hands-on: Flashing multiple crazyflies

● Bit off-topic but this will need to be done in advance.

● Go to examples/demos/swarm_demo

● Don’t forget to put in geometry!
○ Maybe this shifted during setting up

● Use the .sh script for flashing all of them
○ ./cload_all.sh

29

High level commander

30

Principle of HL commander

● Attitude commander

● Position/velocity commander

● High level commander

31

High level commander

● Implemented for Crazyswarm

Preiss, James A., et al. "Downwash-aware trajectory planning for large quadrotor teams." 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. 32

http://www.youtube.com/watch?v=YnGZ-arUwgc&t=14

Hands-on: Swarm with HL Commander

● Go to swarm script

● Fly first with two

● Then with all

33

More autonomy?

34

App layer

● User / research specified application

● Easier to maintain (seperate from firmware)

● More onboard autonomy without needing an PC

● Similar to library but then onboard

CFlib

App layer

Crazyflie Firmware

Log param setpoints HL
 commands

Log param

35

Video example

Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment, K.N. McGuire, C. De Wagter, K. Tuyls, H.
Kappen, G.C.H.E. de Croon. Science Robotics (2019) 36

http://www.youtube.com/watch?v=jU4wsxwM1No

Hands-on: simple hello world

● App layer examples
○ Go to examples/app_helloworld

● Show the makefile

37

Demo implementation app layer

● Spiral trajectory

● Auto landing

● State machine

● Connection with cfclient control tower
○ Only indicates which crazyflie should ‘start’

38

State machine demo

Standby

Take off

Hover Wait to go to
init position

Go to init
position

Run
trajectory

Go to
charging pad

Wait at pad
Land

Check
charging

Taking off and go to
position

Reposition on
pad

Attempting to land

Wait for
positioning

start

Crashed

39

State machine demo

Standby

Run
trajectory

Take off and
go to position

Attempting to
land

40

Show implementation code

● Go to examples/demos/swarm_demo

● Show app.c
○ Indicate where trajectories are

● (This has already been flashed before)

41

Control
tower

Control Tower

Standby

Take off

Hover Wait to go to
init position

Go to init
position

Run
trajectory

Go to
charging pad

Wait at pad
Land

Check
charging

Taking off and go to
position

Reposition on
pad

Attempting to land

Wait for
positioning

start

Crashed

42

Control tower

● Communicates params
○ When to hover and wait

○ When to start trajectory

○ When to terminate trajectory (optional)

● Monitors state
○ Battery level

○ Crashed

○ State machine

● Very limited communication

43

Hands-on: Show the control tower script

● Show the control tower script

● Connect all crazyflies without flying
○ python3 control_tower/control_tower.py 0

● Show the gui
○ Separate terminal: python3 control_tower/tower_gui.py

44

Hands-on: Let’s look at the demo

● One crazyflie flying

● 2 in one spiral

● Multiple at the same time

45

Video of 9 CFs flying

46

http://www.youtube.com/watch?v=uBnngvfUV6o

Recap steps to setup demo

1. Get calibration data basestations

2. Set-up basestations

3. Put one crazyflie with calibration data flashed on the floor

4. Get geometry basestations

5. Setup wireless chargers

6. Flash all crazyflies

7. Start the control tower script and the tower GUI script

8. Done!

47

What to improve in the future?

● Lighthouse 2 improvement

● Fully independent of control tower
○ Maybe with Peer to Peer ?

● Suggestions from you?

48

Questions and let’s socialize!

● Slide and videos will be on www.bitcraze.io/events/bct12020

49

