
Crazyflie 2.0 Quadrotor as a Platform for Research
and Education in Robotics and Control Engineering

Wojciech Giernacki, Mateusz Skwierczyński, Wojciech Witwicki, Paweł Wroński, Piotr Kozierski
Faculty of Electrical Engineering, Institute of Control and Information Engineering

Poznan University of Technology
Piotrowo 3A, 60-965 Poznan, Poland

e-mail: wojciech.giernacki@put.poznan.pl

Abstract—In this paper a Crazyflie 2.0 nano quadrotor
helicopter (quadcopter) as an open source experimental platform
for research and education in robotics and control engineering
has been presented. This low cost, easily expandable
and upgradeable flying robot is here characterized in terms
of hardware and software. Three aspects, which demonstrate
the potential of broad use of this unmanned aerial vehicle (UAV)
by researchers and students, are discussed in the paper. The first
one is an acquisition of measurement data from test flights by the
proposed, freely available “black-box” software. The second
is the use of a new, advanced 4FLY Simulator in order to utilize
the MATLAB®/Simulink environment to easily implement
a mathematical model of Crazyflie 2.0 dynamics, as well as for a
synthesis of various types of controllers with support of OpenGL
cross-language in the visualization of simulations results. The
4FLY Simulator allows to test autonomous flights (and landings)
with obstacles avoidance and to conduct learning and teaching
the basics of Crazyflie 2.0 piloting. In the third aspect the authors
outlined promising, preliminary results obtained in control of
flying robot by pointing device (positioner) and with the support
of a vision system, which basis only on a single Kinect sensor.

Keywords—Crazyflie 2.0; nano quadrotor helicopter; nano
quadcopter; flight simulator; autonomous flights; obstacles
avoidance; autonomous landing; vision-based tracking

I. INTRODUCTION

There are a number of unmanned aerial vehicles (UAVs)
construction types. The most widely used are: fixed-wing [1]
and multirotors [2]. The second group is preferred here due
to possibility of vertical take-off and landing (VTOL). In recent
years quadrotor helicopters achieved popularity due to mecha-
nical simplicity of the robot’s construction – change of UAV’s
position and orientation in the air is the result of solely speed
changes of particular propulsion units. The quadrotor is
inherently unstable, multidimensional, underactuated object,
with highly non-linear dynamics, and its parameters can be
generally considered as non-stationary in time. Therefore
it may be an interesting platform for the part of scientific
community and due to the focused properties UAVs are usable
in many areas of robotics and control engineering research.
An access to low-cost and compact size flying robots is still
desirable in conducting research and projects with students –
especially in laboratories with limited space. In many countries
outdoor flights using these lightweight (micro or nano) UAVs
still rarely require special permissions regulated by law, but

Fig. 1. The Crazyflie 2.0 quadrotor helicopter 3D model

they must primarily ensure the level of security that allows
to use them to fly in environment close to people. In recent
years, AR.Drone 2.0 is widely used [3] due to compact size,
mechanical strength of its construction during unexpected
emergency landings and extensive facilities in a number of
sensors (e.g., two on-board video cameras). Unfortunately, this
UAV is commercial, developed for consumer entertainment
(mostly for augmented reality games). This fact introduces
difficulties and limitations of using it as an open platform
for research and development (there is a lack of full/open docu-
mentation and scientific community support for AR.Drone 2.0).

 An alternative solution, i.e., the Crazyflie 2.0 flying robot
(see Fig. 1) is proposed to use in this paper. The novelty
and scientific contribution is here a development of dedicated,
open source research and education tools. On their examples
one demonstrated (to the authors’ best knowledge for the first
time in world literature) the effectiveness of proposed control
system synthesis for the robot from [6] with introduced
mechanisms of an autonomous soft landing and obstacles
avoidance. The paper presents also the preliminary results
of the research on autonomous tracking of the reference
changes of the robot’s position and orientation in 3D space
by the use of the low-cost vision system [4].

In the second section, the hardware and software
of Crazyflie 2.0 is presented, as well as a state of the art
in world research based on this robot. Section III contains basic
information about Crazyflie Java Client. In Section IV one may
find a description of the 4FLY Simulator project and proposed
algorithms of an autonomous soft landing and obstacles
avoidance (verified in tests). In Section V the preliminary
results in control of Crazyflie 2.0 by pointing device and just
one Kinect sensor are shown.

II. CRAZYFLIE 2.0 FLYING ROBOT

A. Background

Nowadays, several of world’s known research centers
and technical universities use the possibilities offered by the
Crazyflie 2.0. Research is being conducted in the context
of parametric identification methods for the mathematical
model of its dynamics [5, 6], as well as for designing
of position and trajectory control algorithms for a single robot
[6], especially operating in cluttered environments [7]. In [8],
the use of UAV for creation of stippled prints on canvas using
an ink soaked sponge, was proposed. Moreover, nano size
predefines Crazyflie 2.0 also for work in groups (swarms)
of robots – such as: online trajectory planning in cluttered
environments [9], large, 49-vehicles formation flights [10] or to
explore the field of mixed reality [11]. In order to more outline
the area of UAV potential applications, a brief introduction
to the Crazyflie 2.0 is presented below.

B. Hardware

Crazyflie 2.0 is a nano quadrotor helicopter equipped
with four 7x16 mm coreless DC motors (Kv: 14000 rpm/V,
rated voltage: 4.2 V, rated current: 1000mA, weight: 2,7 g,
shaft length: 3,5 mm, shaft diameter: 0.8 mm) and 45 mm
plastic propellers. Propulsion units are attached to the circuit-
board frame of the UAV. Thus it measures only 92 mm
between diagonally opposed motor shafts and is 29 mm height.
Total weight is contained in 27 g. Payload is limited to 15 g.
Crazyflie 2.0 is supplied by 1 Cell (3.7 V), 20x30x7 mm,
240 mAh LiPo battery (weight: 7.1 g). It provides energy up to
7 minutes of continuous flight.

This nano flying robot is based on two microcontrollers:
main and additional (32 MHz nRF51822 ARM Cortex-M0
processor for power energy and radio communication
management). The main microcontroller is an ARM 32-bit
STM32F405 Cortex-M4 embedded processor (with floating-
point unit) running at 168 MHz with 192kb of SRAM.
It communicates with ground station (PC computer with USB
dongle) and being controlled over the 2.4 GHz Crazyradio PA
(with Nordic Semiconductor nRF24LU1+) in up to 1 km range
line-of-sight (with transmission up to 2 Mb/sec in 32-byte
packets). As a manual controller, a gamepad with four analog
axes may be used. Crazyflie 2.0 can be control also using
a smartphone or tablet via Bluetooth (default by changes
of roll , pitch, yaw and thrust values).

The robot on-board sensors system is based on 10-DOF
(degrees of freedom) Inertial Measurement Unit (IMU),
i.e., MPU-9250 with three axis: gyro, accelerometer
and magnetometer, as well as additional high precision
pressure sensor (LPS25H). All sensors provide measurements
to stabilize the flight. By the expansion interface the users have
a direct access to such buses as UART, I2C and SPI. Moreover,
the whole hardware architecture of the robot is open source, as
well as software. More information may be found in [12, 13].

C. Software

The beginning of Crazyflie project was in year 2009.
Swedish developers from Bitcraze AB company, aimed whole

effort to propose versatile flying development platform (“Made
by developers for developers”). Thus now, from December
2015, science community is able to work with Crazyflie 2.0
source code and final product documentation. Researchers
and students can modify the firmware and the software
for variety of research and educational purposes, as well as
share the knowledge on the forum [14] with the community.

The UAV’s firmware is based on the FreeRTOS open
source real-time operating system. The default software
(Crazyflie Python Client – CPC) is written in the Python
programming language, but there are several alternatives
for Linux, Mac OS and Windows operating systems (in Ruby,
C, C++ , C#, Javascript and Java languages) – available at the
GitHub hosting service [13]. The CPC software offers
a number of useful capabilities for both beginners
and advanced users. Primarily, it enables quadrotor control
using the predefined controller with a preview in real time
for the most important flight parameters and an attitude
indicator. The software, in the Parameters menu, allows
to preview and set the values of particular controllers.
Moreover, a control signal saturation level can be introduced
(in the Advance mode). The Crazyflie 2.0 flight can be recorded
and presented on plots (Plotter menu). Attached library
in Python language encourages the further personalization
of the CPC [13].

D. State of the art in mathematical modeling and control

Due to limited volume of the article, the authors decided
only to briefly specify references to valuable papers, where a
necessary information, extending below issues, are provided.
Respectively, in [5] on page 75, one can find identified inertia
matrix for 28 g weight Crazyflie 2.0. This matrix is used
in mathematical models of quadrotors. Moreover, the author
provided information about moment of inertia of a point mass
with distance from axis that approximately equals a half of the
robot diameter (0.092 m). Motor parameters, e.g., discrete
transfer function between input command given to the motors
and produced thrust for UAV’s motors, thrust and rotor angular
velocity as functions of input command, as well as information
about particular drag coefficients and their proposed models,
have been presented. A classical, well-established in literature
[15], parametrized model of the Crazyflie 2.0 dynamics (with
motion capture Vicon system’s markers on-board) is explained
in detail in [6] and [7], where one can find the thrust and torque
coefficient values. In [6] the author proposed the linearized
model in a state space representation. In this paper the robot
mathematical model from [15] has been used. The sets
of controllers [6] are presented in Table 1 (default from
Bitcraze are bold). Naturally, they are non-optimal sets,
but only a reference for own tuning.

TABLE I. CRAZYFLIE 2.0 SETS OF CONTROLLERS FROM [6]

 Roll
& Pitch
Rate

Yaw
Rate

Roll
& Pitch
Rate

Yaw
Attitude

Altitude X & Y

Kp 70 70 3.5 0 or 3 11000 30

K I
0

50 or
16.7 2 0 3500 2

KD 0 0 0 0 9000 0

III. CRAZYFLIE JAVA CLIENT

The Crazyflie Python Client software and library [16] were
the inspiration for development of Crazyflie Java Client (CJC)
[17]. It was created to provide to scientific community and
students a simpler tool predefined for two purposes: a preview
on basic flight parameters (Fig. 2) and for the archiving of all
possible data from Crazyflie 2.0 (especially from its sensors).
After connecting the robot via USB to the ground station, it is
possible to explain to students on the artificial horizon how to
control the quadrotor in the preview mode (and meaning
of roll , pitch and yaw angles, as well as thrust). In flight mode
one can observe changes of speeds of individual propulsion
units while maneuvering, and also one can monitor the battery
charge level. Introduced minimalism enables to use
the software primarily as data logger for research and student
projects such as a development of state vector estimators and
an identification of UAV model parameters. Fusion of sensors
data is also possible, as well as an analysis of robot dynamics
characteristics and the testing of the controllers synthesized
in the 4FLY Simulator – presented in the following section.

The CJC is available as an open source software among
others in MMD database [18], where its capabilities are widely
demonstrated. The use of Java language in conjunction
with Apache Maven and Java FX enabled to propose software
for multiple platforms and operation systems (CJC requires
only a Java Virtual Machine on a particular device).
The software allows to record data from flights (up to 6
different parameters simultaneously) directly to .csv file or to
one of two databases: relational – MySQL (Java DataBase
Connectivity) and non-relational – MongoDP (as a form
of objects in a format similar to JSON).

IV. 4FLY SIMULATOR

There are a number of ideas and approaches to UAVs
simulation. Popular among control engineers MATLAB®
environment is dominated by solutions which use a blocks
architecture of the Simulink library and related toolboxes,
such as the open source Robotics Toolbox. By using of m-files
and s-functions, conducting of a control system synthesis,
an optimization, a path planning and a swarm intelligence
of UAVs is possible, but the presentation of results in the form
of basic time courses or limited, simple animations focused
attention of scientific community (mainly roboticists) in
direction of solutions commonly used under Robot Operating
System on Linux and in C programming language. The software
such as GAZEBO enable to integrate functionalities
(e.g., sensory data from the real environment and robot in 3D
virtual reality [11]). The use of virtual environments like
UNITY 3D or V-REP is also widespread in this context. In this
paper, the application of the OpenGL multiplatform library
(with GLFW, GLEW and GLM packages) and CAD-type
(Computer Aided Design) software are proposed for tasks
conducted in MATLAB® environment – for example the 4FLY
Simulator dedicated mainly to multirotor flying robots,
e.g., Crazyflie 2.0 [19]. The idea and some functionality blocks
of the simulator are shown in Fig. 3. Figure 4 presents
the integration of used environments. The proposed
communication via MATLAB® Engine is a more efficient
alternative to commonly used User Datagram Protocol (UDP).

Fig. 2. Crazyflie Java Client interface

Fig. 3. FLY Simulator idea

Fig. 4. Software and signals integration in 4FLY Simulator

Fig. 5. The example of scene used in dydactics of Crazyflie 2.0 manual
control in 4FLY Simulator – views from above and side of the scene

 Examples of flight simulator capabilities are widely
presented on the MMD database website [18]. The 4Fly
Simulator has been written in the C++ programming language.
The use of Assimp library enables to import CAD models
(of the Crazyflie 2.0 or any other flying robot saved in .obj
format) to the simulator in OpenGL graphical environment.
The graphics engine allows to visualize the results of work
performed in real time in MATLAB®/Simulink or simulate
manual control of the UAV in one of the preset scenes
consisting of a set route and a number of obstacles (see Fig. 5).
The 4FLY Simulator enables also the use of scenes prepared
in CAD programs. In ‘manual’ mode, the camera is directed
on quadrotor, so it will always track the UAV flight in TPP
(third-person perspective). Such solution enables a convenient
quadrotor control using the controller. The dynamic lighting
usage enhances the effect of a scene depth. In the mode
dedicated to autonomous flight simulations, the camera track
the center of scene, so the user has a convenient preview of the
entire contents. The authors proposed for this operation mode
a transparent graphical interface and control from Console.
The simulator enables the analysis of tests results and export
them to files after its end. The proposed method of flight paths
setting is discussed below.

a) ‘Auto’ mode
The ‘Auto’ mode is characterized by the possibility

of manually defining all the flight parameters from the control
panel level (Command Window in MATLAB Engine). In this
mode, it is possible to predefine individual points of a
particular path, as well as trajectories in the form of Lissajous
curves. There is also the option to combine points
with advanced trajectories to build full mission scenarios.

b) ‘Waypoint’ mode
A flight path is determined graphically using a computer

mouse. In windows of 4FLY simulator one needs to set desired
coordinates in X, Y axes, as well as altitude (Z) and yaw
values.

The use of MATLAB®/Simulink as a modeling tool of an

autonomous control architecture, quadrotor dynamics, as well
as a parametrization for simulation conditions makes 4FLY
Simulator a complete research tool. In general, it allows
a synthesis of any type of UAV control system (low- and high-
level), as well as tests with mathematical models of multirotor
dynamics. To demonstrate research aspects it has been decided
to present the results of implementation in 4FLY Simulator of
two selected mechanisms which have been described below.

a) Obstacles avoidance
For the reference path from Fig. 6 with the object on the

UAV flight path, it is necessary to propose an efficient
obstacles avoidance algorithm. For this purpose, it is desired to
use a distance measure from obstacle:

 () ()22
obioutobiout YYXXd −+−= , (1)

where (Xiout,Yiout) is a current (i-th) position of the UAV (from
state vector) and i=1,…,k, where k is a simulation horizont.

Moreover, (Xob,Yob) describes position of obstacle and r is its
radius. Thus formula for the activation threshold of obstacles
avoidance mechanism can be used:

 ∆+< rd , (2)

where ∆ is a desired, minimal flight distance from obstacle.
The i-th coordinates of flight (Xi,Yi) through which the UAV
must fly can be described iteratively using following
conditions:

 () ()
()

∆+<++
∆+≥

=
rdYX

rdYX
YX

refref

refref
ii θθ sin,cos

,
, , (3)

where θ is a desired angle of deviation of the flight direction
from original, set direction of flight (for a non-avoiding of
obstacles version), and (Xref,Yref) is a flight destination point.

b) Autonomous mode of soft landing

 Upon reaching the last point of the reference path it is
proposed that the quadrotor should return to the starting point
with the soft landing, according to the formula:

 Γ+
+

=
12

0

i
i t

Z
Z , (4)

where Zi – altitude (above the level of the Earth) in i-th time
step from the start of landing procedure, Z0 – initial altitude
(the last point of the mission), ti – accumulated time from the
start of landing procedure to i-th moment of time, Γ – altitude
on which the UAV has to finish the soft landing (optional
parameter for soft landings, e.g., on environment elements that
are height different from the starting point).

 The example results, obtained during the test
of autonomous, soft landing for Crazyflie 2.0 model from [6],
have been presented in Fig. 7.

V. POSITION CONTROL VIA POINTING DEVICE

 The last example of the Crazyflie 2.0 use as a platform for
research and education, is a proposal for approach to synthesis
of the autonomous tracking system of reference paths by flying
robot, where the track is set by pointing device/positioner (see
Figure 9). The main difference between solution from [20] and
presented in this paper is that instead of using an expensive
motion capture system (with many video cameras) like Vicon
or OptiTrack, only the single, low cost motion sensing input
device, i.e., Kinect (from Microsoft Xbox 360 games console)
has been used for current pointing device position estimation.

In the first stage [4] of research presented here, the use of
Crazyflie 2.0 with attached marker (green ping-pong ball) has
been proposed to determine the current position of robot in 3D
space. To determine the orientation, only on-board sensory
data, transmitted to the ground station (see Fig. 8), are used.
Balls illuminated with LEDs in blue color (1 ball) and red
(2 balls) are used for the construction of positioner (see Fig. 9).

Fig. 6. Exemplary test results with Crazyflie 2.0 model [6] implemented
in 4FLY Simulator: flight without obstacles avoidance algorithm (left figure)
and with (right figure). Recorded flight paths in X-Y surface (below)

Fig. 7. Test result with Crazyflie 2.0 model [6] impemented in 4FLY
Simulator: autonomous, soft landing (left figure – zoom on robot) and its time
course in the Z axis (right figure)

Fixed distances between them are preserved, allowing based
on the RGB image processing from the Kinect explicitly
designate the set reference changes of position and orientation
in 3D space (through which the UAV should move). In [4],
a detailed description of the algorithm implemented
in MATLAB® for image processing is presented. This solution
basis on the isolation of red, blue and green colors from
pictures, filtering of images using the median filter, further
binarization, and recognition of extracted objects (their
centers). In the mentioned thesis the necessary mathematical
formulas, which enable to assign the position of markers
on the binary image to their real life counterparts, are given.

Fig. 8. Control framework

Fig. 9. Crazyflie 2.0 position control using pointing device (tracking based
on the objects recognition by the use of Kinect sensor)

The processed image of the scene is an input for the
calculation software with the implemented control algorithm
for the UAV autonomous flight after the path drawn by
positioner. PID controllers are used to correct the global
position in X,Y,Z axes in cascade control system, while the
default Crazyflie 2.0 controllers (see Table 1) allow to correct
its orientation. The communication between the UAV
and ground station is achieved using the CrazyflieDotNet
library [21] – written in C# for the first generation of Crazyflie
UAV. The software code has been changed [4]. It was
desirable that the data transmitted to the robot (control) were
not set, but automatically retrieved from the MATLAB®
processed images recorded with Kinect. In the first phase
of tests it was decided to limit the control of robot’s global
position in Z axis (rotational speeds of its drive units) and to
control the orientation around the X axis (roll angle), without
the use of support from the depth sensor. Preliminary results
may be found in the MMD database webpage [18].

As it has been shown in [7, 8], multilayer UAV control
architecture generally requires the use of a software-based
speed controller due to an unregulated power supply used
for propulsion units of the Crazyflie 2.0. The torques and trusts

produced by the DC motors generally do not perfectly reflect
the commands (duty cycles UD), which are sent to the
hardware. This fact is a problem in position tracking efficiency
(obtaining reliable thrust control). To solve it the feedback
from the recent measured battery voltage (Vactual) is adapted.
Thus one can use formula for command input to the motors
(as a function of Vactual and desired angular velocities of the
motors):

 αβω +−= 2max

actual
D V

V
U , (5)

where Vmax is the nominal voltage of the battery, α – the
minimum duty cycle that must be sent to the hardware in order
to get any angular velocity ω at the motors. The parameter β
accounts for the fact that the propellers start out at the certain
non-zero velocity [7].

VI. CONCLUSION

In this paper the Crazyflie 2.0 flying robot was introduced
as the platform for research and education in robotics
and control engineering. The state of the art and the references
to most valuable papers regarding this quadrotor were provided
– i.e., to describe its potential use, the modeling of the UAV
dynamics, the available control architectures, etc. The Crazyflie
2.0 hardware and software were also briefly discussed. On that
background, three related projects were described. Based the
first – to enhance the potential use of robot in education and
research, one presented a freely available Crazyflie Java Client
software package, which allows among others the flight data
acquisition. The second project outlined the capabilities of the
4FLY Simulator as the tool developed mostly for designing and
initial testing of the Crazyflie 2.0 control system with a variety
of controller types. For example, the two selected test results
were provided for proposed mechanisms of the soft landing
and the obstacles avoidance. In the last example, one showed
some preliminary results, how this nano quadrotor can be used
in the context of vision-based control.

The presented experiments in which the flying robot has
been utilized, highlighted interesting further research
perspective and educational usage. The proposed 4FLY
Simulator can be a starting point in the development of swarms
intelligence algorithms for missions of several Crazyflie 2.0
UAVs before tests with real robots. A recorded data from
the CJC can be useful to simulate real flight conditions
of particular swarm. Moreover, by the use of the motion
capture algorithms, one may use positioner as “the leader”
to introduce the reference path for the swarm, which is flying
with mechanisms of collisions and obstacles avoidance.
In education, the UAV can be very useful in projects
for students studying subjects like: basics of dynamical
modeling and control, real-time systems, sensors and vision
systems, automatic control, embedded control systems, signal
processing and many other.

ACKNOWLEDGMENT

The authors are grateful to engineers: Mr Sebastian Korcz
and Mr Adrian Olbrzymek for the development and the
implementation of the solutions presented in Section 5 (used
there in order to show the diverse of the applications
in Crazyflie 2.0 flying robot).

REFERENCES
[1] P. Parada, T. Espinoza, and A. Dzul, “Nonlinear observers applied

to fixed-wing UAVs”, Proceedings of the 2014 International Conference
on Unmanned Aerial Systems (ICUAS), pp. 780-790, May 2014.

[2] P. Castillo, R. Lozano, and A. Dzul, Modelling and Control of Mini-
Flying Machines, Springer-Verlag, London, 2005.

[3] T. Krajnik, V. Vonasek, D. Fiser, and J. Faigl, “AR-Drone as a Platform
for Robotic Research and Education”, Proceedings of the Research
and Education in Robotics – EUROBOT 2011, pp. 172-186, 2011.

[4] S. Korcz, and A. Olbrzymek, Multirotor Flying Robot Control
in Relation to Positioner, B.Sc. Thesis in polish, Poznan University
of Technology, 2017.

[5] J. Forster, System identification of the Crazyflie 2.0 Nano Quadrocopter,
Bachelor Thesis, Institute for Dynamic Systems and Control, Swiss
Federal Institute of Technology (ETH), Zurich, 2015.

[6] C. Luis, Design of a Trajectory Tracking Controller for a nano-
quadcopter, Techn. Report, Ecole Polytechnique de Montreal, 2016.

[7] B. Landry, Planning and Control for Quadrotor Flight through Cluttered
Environments, Master Thesis, MIT Institute of Technology, 2014.

[8] B. Galea, E. Kia, N. Aird, and P.G. Kry, “Stippling with aerial robots”,
Computational Aesthetics in Graphics, Visualization, and Imaging,
online, 2016.

[9] L. Campos-Macias, D. Gomez-Gutierrez, R. Aldana-Lopez, R. de la
Guardia, and J.I. Parra Vilchis, “A Hybrid Method for Online Trajectory
Planning of Mobile Robots in Cluttered Environments”, IEEE Robotics
and Automation Letters, DOI: 10.1109/LRA.2017.2655145, 2017.

[10] J.A. Preiss, W. Honig, G.S. Sukhatme, and N. Ayanian, “Crazyswarm:
A Large Nano-Quadcopter Swarm”, Extended Abstract for IROS 2016.

[11] W. Honig, Ch. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian,
“Mixed Reality for Robotics”, 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5382-5387, 2015.

[12] Bitcraze Wiki, https://wiki.bitcraze.io/, access: 6.02.2017.

[13] Bitcraze GitHub, https://github.com/bitcraze, access: 6.02.2017.

[14] Bitcraze Forums, The Bitcraze web forum, https://forum.bitcraze.io/.

[15] S. Bouabdallah, and R. Siegwart, “Full Control of a Quadrotor”, 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 153-158, 2007.

[16] Java library https://github.com/fredg02/se.bitcraze.crazyflie.lib
for Crazyflie 2.0 (Bitcraze GitHub), access: 6.02.2017.

[17] P. Wroński, The application for acquisition of flight data from Crazyflie
2.0 multirotor flying platform, B.Sc. Thesis in polish, Poznan University
of Technology, 2017.

[18] W. Giernacki, D. Horla, and T. Sadalla, “Mathematical Models Database
(MMD ver. 1.0). Non-Commercial Proposal for Researchers”,
Proceedings of the 21st International Conference on Methods and
Models in Automation and Robotics (MMAR), pp. 555-558, 2016, DOI:
10.1109/MMAR.2016.7575196.
http://mathematicalmodels.put.poznan.pl

[19] M. Skwierczyński, and W. Witwicki, Simulation environment
in OpenGL for control purposes of a multi-rotor flying platfrom, B.Sc.
Thesis in polish, Poznan University of Technology, 2017.

[20] Crazyflie – Position Control, University of Augsburg,
https://www.youtube.com/watch?v=QjxF9zUlIx0, access: 6.02.2017.

[21] Ch. Karcz, CrazyflieDotNet, https://github.com/ckarcz/CrazyflieDotNet,
access: 6.02.2017.

