Author: Arnaud

We are happy to anounce the availability of the 2021.03 release of the Crazyflie firmware and client! This release includes new binaries for the Crazyflie (2021.03), the Crazyflie client 2021.03 as well as the Crazyflie python library The firmware package can be downloaded from the Crazyflie release repository (2021.03) or can be flashed directly using the client bootloader window. The firmware package contains the STM firmware (2021.03), the NRF firmware (2021.03) and the Lighthouse deck FPGA binary (V6).

The main feature in this release is the stabilization of the Lighthouse positioning system. The main work done has been on the system setup and management, it has taken a lot of work spawning all the projects and a brunch of documentation, but we think we have reached a stage where the lighthouse positioning system is working very well and is very easy to setup and get working. We have now published the new Lighthouse getting started guide and will be working this week at updating all required materials to mark Lighthouse as released!

When the Lighthouse positioning system was released in early access, it required to install SteamVR, run some custom scripts and flash a modified firmware to get up and running. This has been improved slightly over time with scripts that allows to setup the system without using SteamVR and some way to store the required system data in the Crazyflie configuration memory rather than hard-coded in the firmware. With this release, everything is coming together and it is now possible to go from zero to an autonomous Crazyflie flying in a lighthouse system in minutes by just using the Crazyflie client.

Another major improvement made to support the lighthouse is the modification of the bootloader Crazyflie update sequence in the client as well as in command line. The new sequence will restart the Crazyflie a couple of times while upgrading the Crazyflie, this allows for an upgrade of the firmware in the installed decks if required. The lighthouse deck firmware has been added to the Crazyflie .zip release file and will be flashed into the deck while flashing the release to a Crazyflie that has the deck installed.

An alternative, robust TDoA implementation has been added for the Loco Positioning System. This change has been contributed by williamwenda on Github and can optionally be enabled at runtime.

An event subsystem has also been added to the firmware. It allows to log events onto the SD-Card which can be very useful when acquiring positioning data from the various positioning system supported by the Crazyflie. We have described this subsystem in an earlier blog post.

There has also been a lot of smaller improvement and bugfixes in this release. See the individual project releases not for more information.

We hope you are going to enjoy this new Crazyflie and lighthouse release. Do not hesitate to drop a comment here, questions on the forum if you have any or bug reports of github in the (very unlikely ;-) event that there are bugs left.

Storage is one of these very simple functionality that actually ends up being quite hard to implement properly. It is also one of these functionality that is never acutely needed, it is possible to hack around it, so it gets pushed to be implemented later. Later is now, we have now implemented a generic persistent storage subsystem in the Crazyflie.

In Crazyflie 1.0, we originally stored settings in a setting block in flash and required the bootloader to change the settings. When designing Crazyflie 2.0 we added an I2C EEPROM to make it easier to store settings, though until now we only stored a fix config block very similar to the one stored in the Crazyflie 1 and that only contained basic radio settings and tuning. This implementation is hard to evolve since the data structure is fixed in one point of the code.

What is now implemented is a generic key-buffer database stored in the I2C EEPROM. From the API user point of view, it is now possible to store, retrieve and delete a buffer using a string as a key. This allows any subsystem, or apps, in the Crazyflie to easily store and retrieve their own config blocks. There is 7KB of space available for storage in the EEPROM.

The first user of this new storage subsystem is the Lighthouse driver. The storage is used to store lighthouse basestation geometries and calibration data, this allows to configure a Crazyflie for a system/lab and have it running out of the box even after a restart.

A future use-case would be to implement stored-parameters: we have been thinking about implementing optional persistence for the parameters for a long time. This would allow to modify and then store new default values for any parameters already present in the Crazyflie. This would allow to very easily implement things like custom controller tuning in a quad made from a bolt for example.

At low level, we where hopping to be able to find a ready-to-use library or file system to store data in our small EEPROM, but unfortunately we did not find anything that would fit our needs. We then had to implement our own storage format.

The low level structure is documented in the Crazyflie firmware repos. Basically the data are stored as a table of “length-key-value” entries with a possibility for an entry to he a “hole”. When new buffers are added they are added at the end of the table and when they are deleted they are replaced by a hole. When the end of the table is reached, the table is de-fragmented by removing the holes and moving the data as much as possible to the beginning of the memory. This structure works very well for an EEPROM and could even be adapted to work well on FLASH.

New CI

When we started activating continuous integration/automatic build to our GitHub repos we did so using Travis CI for firmware builds and AppVeyor for windows builds. However, the GitHub CI offering, GitHub actions, has become quite complete lately and now supports Linux, Windows as well as MacOS builds.

We have now transitioned to GitHub actions for all our repos and we will also implement most of the release process using GitHub actions as well. This will hopefully streamline the release process and allow us to release new version of our projects more often.

Following firmware releases we have now released a new version for the Crazyflie client and python lib (cflib). It took a bit more time to test and fix various last minute bugs but we now have released Crazyflie client 2020.09 as well as Crazyflie lib 0.12.1.

Crazyflie python lib 0.12.1

The main new funcitonalities of the lib are:

  • Python 2.x support is now dropped. Python 2 official support has ended beginning of this year and it is not installed by default in Ubuntu 20.04, it was time to stop supporting it in cflib
  • Some documentation work
  • Capabilities to abort a bootloading operation

Crazyflie client 2020.09

There has been a brunch of cosmetic and functional changes in the client. Some themes have been added so that the client can now be used with a dark blue or even green-on black hacker theme. The used Qt theme has also been forced to be drawn by Qt on all platforms: this means that the client will not look like a Windows or Mac app on Windows and Mac, but the styling will be consistent on all platform. This will simplify development and make documentation consistent with all platform.

The bootloader has been changed to automatically download releases of the firmware from Github by default. This is a great quality of life feature made by victor this summer that makes it very easy to run Crazyflies with a clean release build.

New bootloader window

There are also a brunch of bugfixes, the full changelog can be read on the release page.

Future plans

Semantic versioning for the lib

We have been thinking of using semantic versioning for the lib and bumping the version to 1.0. This will allow us to communicate the state of the lib more accurately: it is not perfect but it is perfectly usable. As well giving more freedom to break compatibility. A lot of things could be made better but we are always very careful not breaking backwards compatibility. Proper semantic versioning would allow us to make a Crazyflie client lib 2.0 making it clear that if you update from 1.0 to 2.0 you might have to make changes to your scripts.

Client binary release for more platform

So far, the Crazyflie client has had a binary release for Windows and some work to make one for MacOS. By Binary release we mean releasing the client in a form that does not require installing python, and then the crazyflie client pip package, on Windows it is an installer and on Mac it would be an app bundle.

Last week we have also been working on Linux releases, after all most of us uses Linux at Bitcraze so we might as well show it some love. Today we have released a snap of Crazyflie client. This means that you can install Crazyflie client from the Ubuntu software application on Ubuntu, or directly via the snap install –edge cfclient command on any Linux system with snap installed. There is still some rough edges, and a stable version will only be available for next release, but this should make it much easier to get started with the Crazyflie.

I am back from parental leave and during this time I tried not to think too much about Crazyflie-related things to get a little break. However, over time, while geeking around, I eventually ended-up back to Crazyflie and Crazyradio designing a new channel-hopping communication protocol. This will likely be the subject of a future blog post but for the time being I thought I could write a bit about how the current Crazyflie radio communication is working.

Protocol layers

Like Many protocols, the Crazyflie communication protocol is layered. This allows to plug different elements at each level. When it comes to a Crazyflie client talking to a Crazyflie over the radio, the layering looks as follow:

Services are high-level functionalities like log that allows to get values of Crazyflie variables at regular interval. At this level there is essencially an API with commands like addLogBlock.

CRTP is a protocol that encapsulates the commands for each sevices. It multiplexes packets on the link using port numbers, this is very similar to TCP/UDP port on a network, each service is listening and sending packet on a pre-specified port.

Finally the radio link only deals with raw packets. The role of the radio link is to deliver packets from the PC to the Crazyflie and vice-versa. At this level, we have many link implementations, the most used are the radio and the USB link but there also is a Serial link that uses the Crazyflie serial port.

Radio link

The radio link is currently implemented by the Crazyradio (PA) on the PC side and the Crazyflie on the other side. The Crazyradio uses a nordic semiconductor nRF24LU1 USB/Radio chip and the Crazyflie a nRF51822 MCU/Radio. This is importance since, while the nRF51 has a quite flexible radio, the nRF24 does use a standalone SPI radio that has most of the packet handling hard-coded to a protocol that nordic call Enhanced Shockburst (ESB).

The ESB protocol handles sending packet and receiving acknowledgement automatically. A packet is sent on a radio channel, using a 5 bytes address, and when this packet is received on the other side an acknowledgement is sent back using the same address on the same channel. Both the original packet and the acknowledgement can contain a payload.

To implement a bi-directional radio link, the crazyradio is the one sending packets and the Crazyflies continuously listens and, when receiving a packet, sends back an ack. We do use the payload capabilities of both packet we send and of the ack to implement an uplink (PC->Crazyflie) and downlink (Crazyflie->PC) data link.

Of course, one problem with this setup is that while the PC can decide to send a packet at any moment, the Crazyflie needs to wait for the PC to send a packet to have a chance to send one back in an ACK. To make sure the Crazyflie has enough opportunity to send packets back, we are sending packets regular interval to the Crazyflie even if there is no packet to be sent. This polling allows to implement a continuous downlink.

The most important to see here is that the radio link gives to the upper layer, the CRTP layer, the illusion of a full duplex link. On the radio side this is implemented by polling regularly for downlink packets.

Communicating with multiple Crazyflies

In order to communicate with multiple Crazyflie, we just send packet to each Crazyflies one after each-other. This way we give equal chance for each Crazyflie to send back packets and doing so we divide the available bandwidth between them.

The main advantage of the polling protocol versus a more traditional P2P protocol where the Crazyflies would send when they want, is that when using polling the Crazyradio is the master and we can guarantee that we are not introducing any packet collision when we communicate.

Limitation and future

One major limitation of the current protocol is that it communicates on a single channel and requires the user to set manually channel and address for each Crazyflies. This means that the user has to tinker with parameters to find a good channel and has to manually handle all addressing.

Another limitation is that the polling is done over USB by python or, in case of ROS/Crazyswarm, in C++. This adds the USB latency to the equation and complexifies the client implementation.

I have been working on defining a new protocol that would be implemented efficiently in a Crazyradio and that would implement addressing and channel hopping. The idea is to get closer to a connection style more like bluetooth low energy where you do not have to care about channels and setting address, you just connect your device. Unlike BLE though, this protocol will be optimized for low latency. Stay tuned, we will likely talk about that more in future posts :-).

We are happy to announce that we have gotten Crazyflie 2 to fly autonomously using the Lighthouse deck and Lighthouse V2 base-stations. This was a very requested features, and while this is not stable and ready to use yet, it is a great milestone toward Lighthouse V2 support.

There exists two incompatible versions of the Lighthouse positioning system. Version 1 was released with the original HTC Vive VR system. In this system base-station are using two rotating laser beam that sweeps the room, one horizontal and one vertical, and an omnidirectional synchronization flash to allow IR light receiver to be located in the room. One limitation of this version is that up to two base-station can be used and no more, this is mainly due to the fact that beam identification is done using a TDMA scheme: base stations switch-on their laser in a dedicated time-slot one after each-other and adding more time slots for more base-stations will greatly reduce the update rate of the system.

Lighthouse V2, was released with the HTC Vive PRO headset and is also used by the Valve Index. The big change is that laser sweeps now carries modulated data and that there is only one rotor with two angled slit instead of the two rotors for V1. The V2 sweep data is described as ‘Sync on beam’ and contains timing information of how long it has been since the synchronization event (ie. when the rotor crossed 0 degree). The sweep data also allows to identify the base-station that has transmitted the sweep. This removes the need for an omni-directional synchronization pulse and allows more than two base-station to operate at the same time in the same space, since their sweeps can now be identified and timed.

The lighthouse V2 system is very elegant and scalable. However, actually decoding the signal from the sweeps has taken a lot of time since it is not documented and we needed to find-out what the encoding actually was. There has been effort on the internet to understand how the system worked, the most useful one is this github ticket that goes from raw data acquisition to fully unlocking the beam encoding.

I have been working on-and-off for a long time on making an FPGA design for the lighthouse deck to acquire and decode Lighthouse V2. The main blocking point until now was that I had not been able to reliably acquire useful signal from the system in order to allow real-time decoding on the Crazyflie. Added to that, there was some inconsistency between what we though the system was doing and what we could gather from the base-stations debug console. Recently though, the last piece of the puzzle, was to discover that the beam encoding was not Manchester, as we though, but Bi-phase mark code FM1 (BMC). Once this decoding was used everything made sense and worked.

Added to that, I started using SpinalHDL instead of raw Verilog to write the FPGA design which allows for much quicker iteration, much less frustration, and it also allowed me to easily make the design multi-clock which is required to decode the BMC signal: the beam decoder runs at 48MHz, and the rest of the system works at 24MHz. This design is required since the FPGA we use in the lighthouse deck is not fast enough to run everything at 48MHz.

The result, is a new FPGA firmware for the lighthouse deck that receives, identify and decode Lighthouse V2 sweep signal and send them over to the Crazyflie. The Crazyflie still has a little pulse packing to do (putting together pulses from a single sweep received on multiple sensors) and then can use pulse timing information to calculate azimuth and elevation at which the base-station sees the Crazyflie. This information is the same as the one we get from Lighthouse V1 and so the same algorithm can be used to calculate the Crazyflie position.

I hacked a proof of concept was this last fun Friday and it flies!

If anyone is curious the code for this demo has been uploaded as an out-of-tree driver and the code for the FPGA parts is already in the lighthouse-fpga project. The current Crazyflie code is too incomplete to be usable, but it is a nice starting point if anyone wants to play with Lighthouse V2 and the Crazyflie right away ;-).

As a side note, the Bitcraze team will shrink temporary as I, Arnaud, will go in parental leave until mid-August. I look forward to this new adventure and I trust the lighthouse V2 development and the forum will be in good hands in my absence.

We are currently finishing production test design for a couple of expansion decks and we figured we never wrote about it and about the more general board production process. In this blog post we wanted to talk a bit about how we test boards in the productions phase, taking as an example the forthcoming active marker deck.

The active marker deck

When finalizing an electronic board, we send to the manufacturer documentation that allows to manufacture & assemble a, hopefully, functional board. Although we assume that the individual components are in working order, the problem is that the assembling is not always perfect, so we need to check that everything we do is actually working,. This is what the production test is solving.

The first thing is to find out what to test, for that we need a strategy. The strategy we have been using is to test every step where we have modified or work on: for example we will test all the connections we have soldered in the manufacturing process. We will normally not test all the functionalities of ready-made module. For example, following this strategy, we will usually test all communication interface we have cabled, but we will not test all functionalities of a microcontroller we solder on the board, these are deemed to be already tested and working by the microcontroller manufacturer. This step usually end up with an annotated schematic:

Annoted schematics of ActiveMarker Deck

Once we know what to test and roughly how to test it, we document a test rig that will be able to run the tests automatically. Some tests are generic and applicable to all our boards, for example we do test voltages with a multi-meter on every board that has a regulator. Some tests are very board specific. For example, for the active marker deck we want to test IR LEDs and an IR detector, we define a test rig that has reflector to reflect the LED to the detector and we will use the onboard detector to test the LEDs:

Simple block diagram of the test rig for the ActiveMarker Deck

We are normally using a Crazyflie on all our test rig, since it is usually possible to test all functionality from the deck port. We also try as much as possible to integrate the test software into the real software. For the active marker deck it meant adding 38KHz modulated output mode to the LEDs in order to emit a signal detectable by the detector, which will make it to the final firmware. Finally, we have a test software, running on the test computer, that uses the Crazyflie python lib to talk to the Crazyflie and run the test. The last step of all the test is to write the deck One Wire identification memory so that it can be detected by a Crazyflie.

Screenshot of the test program for the test engineer

From these specification, the manufacturer can then build a test rig and start testing boards, non-passing board will be re-worked until they pass or discarded.

Test rig for the Multi-ranger expansion deck

What we have learned in our years at Bitcraze is that testing phase is the most important part of the development process of PCB. Therefore, the earliest we already start thinking about the production tests in the board design, the more smooth the final phase of production of our new products will be.

We talked about it in a previous post, it is more than time to implement a higher abstraction layer for the Crazyflie firmware to make it easy to implement custom automations and programs on top of the flying platform. In this post we will try to explain the state of the art and where we are thinking of heading. This is mostly a request for comments and we are creating a github ticket to discuss about it.


The out-of-tree build and P2P API presented in the previous post is a great start: it allows to make project on top of the Crazyflie firmware that can easily be maintained over time and to communicate directly between Crazyflie without having a PC in the loop. Though we have not completely solved or documented the API that can be called by the programs written on top of the Crazyflie, this is what the APP-layer is supposed to provide.

The current plan for the app layer is to make the same functionality that is available in the Python crazyflie lib API, accessible from within the Crazyflie firmware, using similar API calls. This way we get the possibility of prototyping functionality in python code on a remote machine, and when it is working, easily convert it to an app onboard. This is already implemented, in part, for the log and param API as well as for the low level parts of the commander. It has enabled us to write programs like the multiranger push demo and SGBA from Kimberly’s paper. The API is not yet documented properly and the function calls do not look like the ones on the python lib side at this time, but our intention is to converge the APIs over time.

We think that having the same level of functionality for Log, Param and Commander within a Crazyflie app, as in the python API, will already allow to implement a lot of onboard programs much more easily than has been possible until now. If there is anything else you think would be interesting to develop in this field, do not hesitate to drop a comment in this post or in the github issue.

Over time the scope of Crazyflie has changed a lot. At first, Crazyflie was “just flying” with the only possible control was attitude (roll, pitch, yaw) and thrust setpoint sent from the Radio. Soon after, autonomous flight was investigated, first by implementing position controller outside Crazyflie and then, over time, moving position control on-board and sending position or trajectory setpoint to the Crazyflie. Now that the Crazyflie has good position control, the next step is to implement autonomous behavior and until now the most practical way is to do this from code running in an external computer. Similarly to what happened in the history of position control (first off-board and now onboard), it needs to be possible implement autonomous behavior in the Crazyflie itself. This blog post is about two newly implemented capabilities that will allow to implement automation in the Crazyflie firmware in an easy and maintainable way, namely the ‘App layer’ and the P2P communication.

App layer

The “App layer” is a term we have been using internally in Bitcraze to describe a set of functionalities that would allow to implement code in the Crazyflie. This includes the infrastructure to compile and maintain external code running in the Crazyflie as well as a set of API to control flight and behavior from C code rather than from radio communication.

Last week we implemented the first step of the App layer: the infrastructure part. It is now possible to build the Crazyflie firmware out-of-tree. This means that it is now possible, from a project, to point to the Crazyflie firmware folder and to compile a firmware from the project folder without touching the Crazyflie firmware folder. Practically it allows to create a git-repos implementing custom firmware code that has Crazyflie firmware as a sub-repos. This makes the maintenance of custom firmware code much easier than maintaining a branch of the Crazflie firmware as previously required.

A second piece that has been implemented is the app entry-point. It allows to start running code by just creating an “appMain()” function. The function will be called from a dedicated FreeRTOS task after the Crazyflie has initialized and started. This should make it much easier to get started.

For an example, we have extracted the multiranger push demo into a standalone git repos. This demonstrate the implementation of autonomous behavior using these new infrastructures.

Peer to Peer communication

The Crazyflie has been used for many research related to swarming, some examples are the crazyswarm project or the work done by Carnegie Mellon University. However, it is now time to turn it up a notch. On the forum and on the Github repository, there has been several request of enabling direct peer to peer communication to the Crazyflies. Now we finally found time to work on it and implement some basic functionality on the NRF and STM side of the firmware.

Currently, it is possible to send and receive a P2P packet in broadcast mode from the STM directly (see how to do this in the documentation). This enables data to be send from one Crazyflie to another with a maximum data size of 60 bytes. We were able to stress-test this with our test rig, by sending broadcast messages in a round-robin-kind of fashion, where the broadcast message was transferred through 10 Crazyflies in 10-20 ms. Even-though the current implementation is for now very minimal, we were able to fix some existing issues in the radiolink framework.

We will not stop there, as we are hoping to implement a communication system similar to how the CTRP protocol has been implemented. We are getting a lot of help by our active community members, so check out this github issue to be up-to-date with the current discussion.

Working at Bitcraze means designing electronics as well as writing software for it, but there is also a lot of other things going-on and managing servers is one of them.

Originally, in 2011 we had a virtual server in the cloud (a VPS like it was called back then). We carefully setup and configured this server and we maintained it over the years. This was easy and served us well but it was also very ‘manual’: any updates where done on the production machine directly and we where doing all changes directly in the production machine.

In 2015, when Kristoffer joined Bitcraze, he revamped completly the server setup. Suddenly we had not only one server but two, one production and one staging. And all servers running on these machines where running in docker containers. This means that the servers where nothing more than a well configured machine to run docker, and all important software and configuration are in docker images and are launched using docker-compose. This is the architecture we are still using today, a great description was written by Kristoffer in a previous blog post.

The docker architecture has worked well but we still have one major problem, we still have servers to take care of. They are still configured manually, needs to be kept up to date and happy at all time. We have been wanting to get rid of these servers and “just” run our containers.

Now enter Kubernetes. Kubernetes is a container Orchestrator originally made by Google that abstracts the servers and allows to run containers independently of handling servers. We had heard of Kubernetes back when we started working with Docker but deemed it overkill: we did not want to setup and handle a cluster of server by ourselves and back then it was not clear that how long Kubernetes would be around. Over time though Kubernetes has had support by all major cloud providers and there is managed offers that would allow us to not handle any servers ourselves.

We are not there yet, but we have been working over the summer at converting our infrastructure to Kubernetes and we are very close to deployment. One of the main parts is our internal Jenkins build server that currently build and deploy services by ssh-in into servers. With Kubernetes this deployment phase will be much simpler and will allow us to update the website without downtime, this is a welcome functionality now that the documentation is moved from the wiki to the main website.

With lightweight Kubernetes distributions like K3S there is also an opportunity to run containers in more domains. For instance we have been talking about making automated hardware system test-bench for a while to test every commit against the real hardware. With K3S and a couple of raspberry-pi that could be achieved quite easily. This is a subject for future fun Fridays though … :-).

Two weeks ago we posted about the demo we did for our new office move-in party. There has been multiple requests to share the script but unfortunately this is a hacked old script that is not going to be useful at all as an example. So, last week, we made an example that could run a synchronized swarm sequence.

The example has been pushed in the example folder of the Crazyflie-lib-python project. It is called Running this example unmodified with 3 Crazyflies in a positioning system will give you this result. (Like the previous demo, this was done in a lighthouse system.)

One of the key design of the example is that it is based on a single control loop that can be synchronized with an outside system: in this example, there is a simple sleep of one seconds between each step of the sequence but it could for example be changed into a midi clock receiver to synchronize the sequence with music.

The example was developed with the help of Victor, a student we have hired to help-out during the summer. He has then played around a little bit to make a 9 Crazyflies sequence that is more impressive:

I uploaded Victor’s sequence in a github gist as it can be good for inspiration. One bit of warning though: as is, the sequence contains some vertical movements that are quite aggressive and the part where Crazyflies fly directly on top of each-other is more to be considered as a stress test.