bolt

Earlier this month, ICRA 2022 was in held in Philadelphia and in person this time! Unfortunately we were unable to attend ourselves but quite happy that there were still virtual attendance options available. So I followed quite some presentations and read through papers, trying to find out the latest in Aerial and Swarm robotics and if anybody was able to use the Crazyflie to good use for their research. I even had the opportunity to attend the Exhibition floor with a telepresence robot, which was a lot of fun!

We have covered IROS 2021 end of last year, and we even have started to publish Crazyflie related publications on social media to keep ourselves and the community up to date with any Crazyflie research work. So here we will list the ICRA 2022 papers we have found and write some observations.

Crazy Platforms

What I really noticed this year is that the Crazyflie has been used in more unconventional configurations and new platforms! IROS 2021 ready amazed us by a solar-powered Crazyflie and the 4 times Crazyflie combined quadcopter (which continued this conference by UCLA in (2). But we haven’t seen yet that a Crazyflie can jump! The PogoDrone by the Swarmslab of Lehigh university turned the Crazyflie into an autonomous jumping pogo stick (5)! Moreover, wheels were added by the Institute For Systems and Robotics (TU Lisbon) for increasing the flight/autonomy durability (7).

We also noticed 3 ICRA 2022 papers with Bolt-powered platforms, which is a huge increase compared to IROS 2021 which only had 1 Bolt entry. The MAVlab of the TU Delft compared the Crazyflie against a Bolt-powered Flapper-drone for flying against wind (see the presentation of Flapperdrone in our last MiniBam). Moreover, remember that saw the Science Robotics paper using a Crazyflie board for a dual wing rotating platform. The Engineering product development of SUTD took a similar design to the next level, building a single controllable rotating wing with a Bolt platform (3). Two of these can even work together cooperatively and fly stability, so it is no wonder that they won the ICRA 2022 Outstanding Dynamics and Control Paper Award.

List of ICRA 2022 Papers featuring the Crazyflie and Bolt

Here is a list of all the Crazyflie/Bolt papers featured in ICRA 2022 but let us know if we are missing any (⚡: Bolt, 🐝: Crazyflie). Mind that only Robotic and Automation Letter entries have been officially published on IEEE Xplore already, so from the proceeding papers I tried to share the ArXiv paper if available.

  1. ⚡ ‘Passive Wall Tracking for a Rotorcraft with Tilted and Ducted Propellers using Proximity Effects’ Ding et al. from City University of Hong Kong & Massachusetts Institute of Technology
  2. 🐝 ‘A Fast and Efficient Attitude Control Algorithm of a Tilt-Rotor Aerial Platform Using Inputs Redundancies’ Su et al. from UCLA
  3. ⚡x2 ‘Cooperative Modular Single Actuator Monocopters Capable of Controlled Passive Separation’, Cai et al. from Singapore University of Technology & Design
    • ICRA 2022 Outstanding Dynamics and Control Paper Winner!
  4. 🐝’Optimal Inverted Landing in a Small Aerial Robot with Varied Approach Velocities and Landing Gear Designs’ Habas et al. from Penn State
  5. 🐝 ‘PogoDrone: Design, Model, and Control of a Jumping Quadrotor’, Zhu et al from Lehigh U.
  6. 🐝 ‘Clustering and Informative Path Planning for 3D Gas Distribution Mapping: Algorithms and Performance Evaluation’, Ercolani et al from EPFL
  7. 🐝 ‘A Bimodal Rolling-Flying Robot for Micro Level Inspection of Flat and Inclined Surfaces’ , Pimentel et al from Instituto Superior Tecnico
  8. 🐝x 2 ‘Collision Avoidance for Multiple Quadrotors Using Elastic Safety Clearance Based Model Predictive Control’, Jin et al. from USTC & Sina
  9. 🐝 + ⚡🦋 ‘An Experimental Study of Wind Resistance and Power Consumption in MAVs with a Low-Speed Multi-Fan Wind System’, Olejnik et al. from TU Delft
  10. 🐝x 6 ‘Formation-containment tracking and scaling for multiple quadcopters with an application to choke-point navigation’, Su et al. from The University of Manchester.

Update

11. 🐝x 6 ‘Nearest-Neighbor-Based Collision Avoidance for Quadrotors Via Reinforcement Learning’, Ourari et al. from TU Darmstadt
ArXiv

Other Announcements: Bolt 1.1 and Dev meeting

Bolt 1.1

The Bolt is now back in stock and with two small updates making it the Bolt 1.1. Here are the changes listed:

  1. The board thickness has been reduced from 1.6mm to 1.0mm to save some weight, roughly 2 grams. This is handy for the slimmest and most lightweight designs.
  2. Motor signal output M4 has been moved from PB9 to PB10 to be able to support the DSHOT motor signal protocol in the future.

Other then that it is fully backwards compatible but make sure to use a recent enough firmware (2022.03) that has the Bolt 1.1 device support added.

Time and Date for Dev Meeting

In this blogpost we noted that we wanted to organize our first Developer meeting before the summer break. From this poll we saw that most of you that want to attend are currently located in Asia and Australia, so that is why this time we want to organize the meeting at:

13:00 CEST (Sweden time) on Wednesday 22th of June.

The topic will be about our new support platform and support handling in general, so I’m hoping for some fruitful discussions about that. Keep an eye on this discussion thread for any details for joining.

You surely remember that last fall, to celebrate our 10 year anniversary, we organized a 3 days online conference on our own. We actually loved it, and you seemed to like it to. So we’ve been contemplating the possibility of having another, on a smaller format.

And after some thoughts, we are glad to announce the Mini BAMs! As the name implies, they are shorter (maximum 3 hours if the discussions get lively), with a simplified platform (to be determined yet), but still with interesting talks, and a lot to discover from speakers and the community. Each Mini BAM will be dedicated to a specific subject, with one or two guest speakers, followed by discussions.

We already have a session programmed, so let’s see what we have in store for our very first Mini BAM!

When? The 18th of May, in the afternoon (CEST)(the exact time will be determined shortly)

What ? Our focus this time is shows in the sky! You surely couldn’t have missed that drones are getting more and more involved in shows and productions. But while aerial entertainment is getting popular, its implementation is not easy. At Bitcraze, we try to accompany artists to help them create a unique experience, but it’s not our main area of expertise. that’s why we’re turning to 2 close partners for those shows in the sky. Which lead me to….

Who ? We will have two distinguished speakers with us this afternoon.

Gábor Vásárhelyi was born in Budapest, Hungary, in 1979. He received his MSc in engineering-physics from the Technical University of Budapest, Hungary, in 2003, and his PhD in technical sciences (info-bionics) from Péter Pázmány Catholic University, Hungary, in 2007. Since 2009 he is with Eötvös University, Department of Biological Physics as leader of the Robotic Lab at Tamas Vicsek’s Research Group on collective motion. Since 2015, he is the CEO of CollMot Robotics Ltd., a spinoff dedicated to multi-drone services. His research fields are connected to the collective motion and collective behavior of animals and robots (drones). He received many awards, for exemple: Junior Prima Award, category of informatics (2007), Magyary Postdoctoral Grant (2013), Bolyai János Research Scholarship (2015), ELTE Innovative Researcher Award (2021).

You may recognize Gabor as the author of this post. For this Mini BAM, he will present us with Skybrush, his very clean platform for any kind of swarm/fleet/multi-UAV mission control.

We will also be joined by Matěj Karásek.

Matěj Karásek studied mechanical engineering and holds a PhD in engineering sciences. He spent 10 years in the academia (ULB Brussels, TU Delft) researching animal flight and developing bioinspired flying robots. He is a founder of Flapper Drones, a startup company developing bird-like robots for research and entertainment applications. 

Matej will talk to us about his Bolt-based drone, that is set up with flapping wings!

You will have time to ask them questions, and be sure to stay afterwards for discussions about show drones, the Bolt, and Skybrush!

If you’re interested in joining, follow this link to pre-register:

https://forms.gle/spDpKqhrus7WrHYJ8

More informations will of course come soon, stay updated!

Batteries in the shop

And now, for something completely different: you may have noticed that it’s difficult to order batteries with us these past weeks. That’s due to a change in transport regulation for Lithium batteries. Thankfully, we got a certification last week that allows us to ship batteries without the limitations that we had to put in the shop. We’re working on getting everything up to par with the new regulations, and shipping only batteries should soon be possible. Finally, the Swarm bundles will be, for a short time, sold without any chargers as we’re out of stock for those. The prices have been regulated accordingly.

We’ve had an exciting year in 2021, and we’re eager to see what 2022 will bring ! Let’s see what’s in the pipeline and what we hope for this new year.

Products

The AI deck and Bolt out of Early Access

We’ve put a lot of efforts during these last months on working with the AI deck’s firmware and infrastructure. With great help of our intern Rik, we managed to make huge leaps, and hopefully sometimes in the coming months we’ll be able to share what we worked on. I can already tell you that the incoming release will bring some needed improvements on flashing on the GAP8 chip and improved image streaming! As the AI deck is one of the most challenging of our decks, we also hope to add an extensive tutorial (that we call the “mega tutorial”) to help you working with it.

Also we have started to push some framework changes to make it easier for you to make bigger drones with the Crazyflie Bolt. One of those are the persistent parameter system that we have recently implemented on the Crazyflie’s, so we will add more and more of these types of features. The hope is, is that we are able to provide some kind of assembly kit for a larger Bolt-based drone, of which we already did some initial battery investigations for.

Prototypes

Fun Fridays are usually our time to play around with new possibilities and prototypes. Marcus has already made great strides, and hopefully in 2022 we’ll be able to go even farther with those. Arnaud has also been working on the much waited new iteration of the Crazyradio, with a new chip and an improved communication protocol. Tobias, our dedicated hardware man, has also ideas down the pipes in the form of a brushless Crazyflie as we already showed in our future plans presentation of November’s BAMdays. Also we hope to initiate the design process of a new and improved version of the Crazyflie with more power and processing capabilities.

People and Collaborations

Last year we have continued our close collaboration with researchers at institutes and universities, to help them out with achieving their goals and contribute their work to our opensource firmware and software. It proves really fruitful, both for us and the people we talk to, so we hope 2022 will see yet again closer and newer connections.

We were really happy with our first own online conference, which helped us reconnect and talk to our community about all the awesomeness achieved with the Crazyflies. We hope to implement something similar on a more regular basis, to keep talking about collaborations, possibilities, and in general sharing all the work that’s been done on the platform. Those “lightweight” BAM should arrive soon, so keep updated if you want to join them!

Component shortage and productions issues

We expect to still deal with the component shortage, as it is expected to last for at least another year, even two. Production is therefore a continuous challenge, with a lot of unpredictability, and we will find better solutions to deal with it in 2022. Thankfully, we have good hopes on keeping good stock levels throughout the crisis, as we’ve increased our stock. We’ll of course keep you updated on any big updates regarding the crisis and how it is affecting it us.

Unfortunately, the component shortage also means that it’s harder to make prototypes. It’s difficult to find and/or buy just one chip, so it causes delays in our creative hardware developments. It is what it is… but we will sure be able to find solutions – as we did during our 10 years’ history!

Anything else?

Of course our heads are always full of ideas and we are passionate to work on anything! We have ambitions in developing a simulation for our users or CI, doing more measurements with the new thrust stand or adding further improvements to our documentation and tutorials. And we might also meet new interesting people (digitally or in person?) who might give us enough inspiration to start something completely new! Soon we will have our quarterly meeting, where we try to herd and select our passions and ideas into conceivable plans and actions.

With all these exciting projects, we’re really excited to see what 2022 has in store for us! I hope you too have an awesome year 2022.

The Crazyflie parameter framework provides a way to get, set and monitor parameters in the quadcopter. Examples of a parameter include which effect the LED ring will display as well as which controller to use for flight.

The parameters have default values and up until now have been reset to those default values on each restart of the Crazyflie. This has not been seen as much of a problem (Or has it? Let us know!) since most use of the Crazyflie platform has been session based and the need for persistent parameters has been low. Our work with getting the Crazyflie Bolt out of early access has however changed this need.

The Crazyflie Bolt kit

The Bolt will need different values for the tuning parameters for controllers and being forced to set these on each boot would be pretty annoying. And since we want the Crazyflie Bolt and the Crazyflie 2.1 to share the same firmware, persistent parameters would come in handy.

Fortunately the Crazyflie includes an EEPROM (Electronically Erasable Programmable Read-Only Memory) which we can use to store parameter values and have them survive restarts of the quad.

So this means, with the latest branches of the firmware and the python library, you can set values of a persistent parameter, store it to EEPROM, and the parameter will keep its values across reset and even across firmware upgrades.

Persistent Parameter API

Not all parameters will be able to be persistent and stored in the EEPROM. We have added a way to declare a parameter as persistent in the firmware:

PARAM_ADD_CORE(PARAM_UINT8 | PARAM_PERSISTENT, effect, &effect)

This will allow the new API added to our python library to be used with this parameter. The API consists of three actions:

  • Getting the state of a persistent parameter
  • Storing the current value of a persistent parameter
  • Clearing the stored value of a persistent parameter

The state of a persistent parameter consist of three pieces of information:

  • Is the value stored or not
  • The default value of the parameter
  • The stored value of the parameter

Setting a value, using the regular parameter API, is not enough to store the value to the EEPROM for a persistent parameter, you need to be explicit. A special API call is needed to store the current value to memory. And to stop storing the value you need to use the clear API action.

Python API

The above choices corresponds to three methods in our Python API:


def persistent_get_state(self, complete_name, callback)

Get the state of the specified persistent parameter. The state will be returned in the supplied callback. The state is represented as a named tuple with members: is_storeddefault_value and stored_value. The state is None if the parameter is not persistent or if something goes wrong.


def persistent_store(self, complete_name, callback=None)

Store the current value of the specified persistent parameter to EEPROM. The supplied callback will be called with True as an argument on success, and with False as an argument on failure.


def persistent_clear(self, complete_name, callback=None)

Clear the current value of the specified persistent parameter from EEPROM. The supplied callback will be called with True as an argument on success and with False as an argument on failure.


Example code

We have also added an example script that will showcase the functionality, it will list the state of all persisted parameters in the firmware, and will store and clear some of them. The output when run against current master is:

$ CFLIB_URI=radio://0/80/2M/E7E7E7E7E8 python3 examples/parameters/persistent_params.py 
-- All persistent parameters --
sound.effect: PersistentParamState(is_stored=False, default_value=0, stored_value=None)
ring.effect: PersistentParamState(is_stored=True, default_value=6, stored_value=2)

Set parameter ring.effect to 10

Store the new value in persistent memory
Persisted ring.effect!
The new state is:
ring.effect: PersistentParamState(is_stored=True, default_value=6, stored_value=10)

Clear the persisted parameter
Cleared ring.effect!
The new state is:
ring.effect: PersistentParamState(is_stored=False, default_value=6, stored_value=None)

You can count on more parameters to be marked as persistent in the near future. Hopefully this will be useful for you! Please report any issues you find!

Happy Hacking!